Group SLOPE Penalized Low-Rank Tensor Regression

被引:0
|
作者
Chen, Yang [1 ]
Luo, Ziyan [1 ]
机构
[1] Beijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
difference-of-convex; false discovery rate; group sparsity; low-rankness; tensor regression; DECOMPOSITIONS; SPARSITY;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This article aims to seek a selection and estimation procedure for a class of tensor regression problems with multivariate covariates and matrix responses, which can provide theoretical guarantees for model selection in finite samples. Considering the frontal slice sparsity and low-rankness inherited in the coefficient tensor, we formulate the regression procedure as a group SLOPE penalized low-rank tensor optimization problem based on an orthogonal decomposition, namely TgSLOPE. This procedure provably controls the newly introduced tensor group false discovery rate (TgFDR), provided that the predictor matrix is columnorthogonal. Moreover, we establish the asymptotically minimax convergence with respect to the TgSLOPE estimate risk. For efficient problem resolution, we equivalently transform the TgSLOPE problem into a difference-of-convex (DC) program with the level-coercive objective function. This allows us to solve the reformulation problem of TgSLOPE by an efficient proximal DC algorithm (DCA) with global convergence. Numerical studies conducted on synthetic data and a real human brain connection data illustrate the efficacy of the proposed TgSLOPE estimation procedure.
引用
收藏
页数:30
相关论文
共 50 条
  • [21] Iterative tensor eigen rank minimization for low-rank tensor completion
    Su, Liyu
    Liu, Jing
    Tian, Xiaoqing
    Huang, Kaiyu
    Tan, Shuncheng
    INFORMATION SCIENCES, 2022, 616 : 303 - 329
  • [22] Hyperspectral Image Denoising With Group Sparse and Low-Rank Tensor Decomposition
    Huang, Zhihong
    Li, Shutao
    Fang, Leyuan
    Li, Huali
    Benediktsson, Jon Atli
    IEEE ACCESS, 2018, 6 : 1380 - 1390
  • [23] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [24] NONPARAMETRIC LOW-RANK TENSOR IMPUTATION
    Bazerque, Juan Andres
    Mateos, Gonzalo
    Giannakis, Georgios B.
    2012 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2012, : 876 - 879
  • [25] MULTIRESOLUTION LOW-RANK TENSOR FORMATS
    Mickelin, Oscar
    Karaman, Sertac
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2020, 41 (03) : 1086 - 1114
  • [26] Sparse regularized low-rank tensor regression with applications in genomic data analysis
    Le Ou-Yang
    Zhang, Xiao-Fei
    Yan, Hong
    PATTERN RECOGNITION, 2020, 107
  • [27] Low-Rank Tensor MMSE Equalization
    Ribeiro, Lucas N.
    de Almeida, Andre L. F.
    Mota, Joao C. M.
    2019 16TH INTERNATIONAL SYMPOSIUM ON WIRELESS COMMUNICATION SYSTEMS (ISWCS), 2019, : 511 - 516
  • [28] ISLET: Fast and Optimal Low-Rank Tensor Regression via Importance Sketching
    Zhang, Anru
    Luo, Yuetian
    Raskutti, Garvesh
    Yuan, Ming
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (02): : 444 - 479
  • [29] Expectile trace regression via low-rank and group sparsity regularization
    Peng, Ling
    Tan, Xiangyong
    Xiao, Peiwen
    Rizk, Zeinab
    Liu, Xiaohui
    STATISTICS, 2023, 57 (06) : 1469 - 1489
  • [30] Group Low-Rank Representation-Based Discriminant Linear Regression
    Zhan, Shanhua
    Wu, Jigang
    Han, Na
    Wen, Jie
    Fang, Xiaozhao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (03) : 760 - 770