Techno-economic analysis of carbon dioxide capture from low concentration sources using membranes

被引:9
|
作者
Adhikari, Birendra [1 ]
Orme, Christopher J. [1 ]
Stetson, Caleb [1 ]
Klaehn, John R. [1 ]
机构
[1] Idaho Natl Lab INL, Mat Separat & Anal Dept, Chem Separat Grp, 1955 Fremont Ave, Idaho Falls, ID 83402 USA
关键词
Carbon capture; Membrane -based gas separation; Techno-economic analysis; Staged membrane system; Global warming; GAS-TRANSPORT; CO2; CO2/N-2; SELECTIVITY; ABSORPTION; SEPARATION; PERMEANCE;
D O I
10.1016/j.cej.2023.145876
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Rising carbon dioxide (CO2) levels in the atmosphere lead to global warming, causing climate change. As such, carbon capture has become necessary to slow the increase and reduce CO2 levels in the atmosphere. Point source emissions have a wide range of CO2 concentrations, but emissions below 3% CO2 have mostly been ignored because Carbon capture from these sources has been viewed as costly and economically unsustainable. Membrane technologies are considered the most viable solution by virtue of more energy-efficient operation. Our group at Idaho National Laboratory (INL) has developed poly[bis((2-methoxyethoxy)ethoxy)phosphazene] (MEEP)-based carbon dioxide selective membranes with CO2/N2 selectivity greater than 40 and CO2 permeability greater than 450 Barrer. To understand the economics of carbon capture, a spreadsheet-based technoeconomic analysis (TEA) model was developed to consider multiple parameters, including selectivity and permeability of the membranes, performance conditions such as the number of stages, module material, electricity price, membrane price, and capital financing. The cost of carbon capture in US$/metric ton was calculated at various purities and compared with other membrane processes, cryogenic capture, solvent-based capture, and pressure swing adsorption-based capture. It was determined that a MEEP-based three-stage process had a capture cost of US$ 50.1/metric ton for 99.8% purity CO2 from a 1% CO2 feed source in nitrogen (N2). The capture cost using the best performing Pebax-based membrane was 464% higher, cryogenic capture was 60%-140% higher, pressure swing adsorption was 55%-165% higher, and chemical absorption was - 10%-110% higher than MEEPbased membrane capture, respectively.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Techno-economic analysis of the direct solar conversion of carbon dioxide into renewable fuels
    Ahad, Abdul
    Talukder, Muhammad Anisuzzaman
    ENERGY CONVERSION AND MANAGEMENT, 2024, 321
  • [22] Carbon membranes for oxygen enriched air - Part II: Techno-economic analysis
    Haider, Shamim
    Lindbrathen, Arne
    Lie, Jon Arvid
    Hagg, May-Britt
    SEPARATION AND PURIFICATION TECHNOLOGY, 2018, 205 : 251 - 262
  • [23] Towards circular carbon economy: recent developments and techno-economic assessment of integrated carbon dioxide capture and utilization
    Zhang, Xing Gang
    Buthiyappan, Archina
    Mohd Azmi, Nuradila Zahirah
    Abdul Raman, Abdul Aziz
    CHEMICAL PAPERS, 2024, 78 (13) : 7229 - 7238
  • [24] TECHNO-ECONOMIC EVALUATION OF AN IGCC POWER PLANT WITH CARBON CAPTURE
    Majoumerd, Mohammad Mansouri
    Assadi, Mohsen
    Breuhaus, Peter
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 2, 2013,
  • [25] Carbon molecular sieve membranes for biogas upgrading: Techno-economic feasibility analysis
    He, Xuezhong
    Chu, Yunhan
    Lindbrathen, Arne
    Hillestad, Magne
    Hagg, May-Britt
    JOURNAL OF CLEANER PRODUCTION, 2018, 194 : 584 - 593
  • [26] Techno-economic analysis of coke oven gas and blast furnace gas to methanol process with carbon dioxide capture and utilization
    Deng, Lingyan
    Adams, Thomas A., II
    ENERGY CONVERSION AND MANAGEMENT, 2020, 204 (204)
  • [27] New coupling technology of phenols extraction in coal tar and carbon dioxide capture: Modeling, optimization and techno-economic analysis
    Li, Yonglin
    Xiong, Qian
    Liu, Huajie
    Xiao, Wenlong
    Ai, Qiuhong
    Chen, Buning
    Zhou, Yusheng
    Luo, He'an
    FUEL, 2024, 357
  • [28] Techno-economic and carbon dioxide emission assessment of carbon black production
    Rosner, Fabian
    Bhagde, Trisha
    Slaughter, Daniel S.
    Zorba, Vassilia
    Stokes-Draut, Jennifer
    JOURNAL OF CLEANER PRODUCTION, 2024, 436
  • [29] Techno-economic modeling of carbon dioxide hydrate formation for carbon sequestration
    Bhati, Awan
    Hamalian, Mark
    Bahadur, Vaibhav
    APPLIED ENERGY, 2025, 377
  • [30] Combined electrification and carbon capture for low-carbon cement: Techno-economic assessment of different designs
    Varnier, Leonardo
    d'Amore, Federico
    Clausen, Kim
    Melitos, Georgios
    de Groot, Bart
    Bezzo, Fabrizio
    JOURNAL OF CLEANER PRODUCTION, 2025, 498