FEST: LEARNING SPATIO-TEMPORAL PRIORS FOR FETAL BRAIN MRI SEGMENTATION

被引:0
|
作者
Penuela, Maria F. [1 ]
Vargas, Luisa [1 ]
Usma, Santiago [1 ]
Escobar, Maria [1 ]
Castillo, Angela [1 ]
Arbelaez, Pablo [1 ]
机构
[1] Univ Los Andes, Ctr Res & Format Artificial Intelligence, Bogota, Colombia
来源
2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI | 2023年
关键词
Fetal brain segmentation; Deep learning; Fetal-MRI; Gestational age; U-Net;
D O I
10.1109/ISBI53787.2023.10230531
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Segmentation of anatomic brain structures on fetal magnetic resonance imaging is key in detecting and diagnosing congenital disorders. We propose FeST: a Fetal brain segmentation method, which includes information on the gestational age through Spatio-Temporal priors. We include gestational age in three different priors. We used it as input in our model through a sinusoidal encoding, and in the loss function through KL divergence and a size-prior for modeling the volumetric growth of the brain during development, and that anatomical structures of the brain grow at different rates [1]. We evaluate FeST in the FeTA dataset achieving a Dice similarity coefficient of 0.917, a Volume similarity of 0.974, and a 95th percentile Hausdorff distance of 10.96.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention
    Kim, Byung-Hoon
    Ye, Jong Chul
    Kim, Jae-Jin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [42] Pushing the spatio-temporal limits of MRI and fMRI
    Yacoub, Essa
    Wald, Lawrence L.
    NEUROIMAGE, 2018, 164 : 1 - 3
  • [43] MULTIPLE INSTANCE LEARNING FOR BREAST MRI BASED ON GENERIC SPATIO-TEMPORAL FEATURES
    Maken, Fahira Ajzal
    Bradley, Andrew P.
    2015 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING (ICASSP), 2015, : 902 - 906
  • [44] Spatio-Temporal Meta Contrastive Learning
    Tang, Jiabin
    Xia, Lianghao
    Hu, Jie
    Huang, Chao
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2412 - 2421
  • [45] Learning spatio-temporal relational structures
    Bischof, WF
    Caelli, T
    APPLIED ARTIFICIAL INTELLIGENCE, 2001, 15 (08) : 707 - 722
  • [46] Convolutional Learning of Spatio-temporal Features
    Taylor, Graham W.
    Fergus, Rob
    LeCun, Yann
    Bregler, Christoph
    COMPUTER VISION - ECCV 2010, PT VI, 2010, 6316 : 140 - 153
  • [47] Spatio-Temporal Multimodal Developmental Learning
    Zhang, Yilu
    Weng, Juyang
    IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2010, 2 (03) : 149 - 166
  • [48] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [49] A Probabilistic framework for the spatio-temporal segmentation of multiple sclerosis lesions in MR images of the brain
    Greenspan, H
    Mayer, A
    Shahar, A
    MEDICAL IMAGING 2003: IMAGE PROCESSING, PTS 1-3, 2003, 5032 : 1551 - 1559
  • [50] LEFT ENDOCARDIUM SEGMENTATION USING SPATIO-TEMPORAL METAMORPHS
    Cui, Xinyi
    Zhang, Shaoting
    Huang, Junzhou
    Huang, Xiaolei
    Metaxas, Dimitris N.
    Axel, Leon
    2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2012, : 226 - 229