Dual generative adversarial networks combining conditional assistance and feature enhancement for imbalanced fault diagnosis

被引:3
|
作者
Li, Ranran [1 ]
Li, Shunming [1 ,3 ,5 ]
Xu, Kun [1 ,2 ,4 ]
Zeng, Mengjie [1 ]
Li, Xianglian [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
[3] Nantong Inst Technol, Sch Automot Engn, Nantong, Peoples R China
[4] Nanjing Tech Univ, Sch Mech & Power Engn, Nanjing, Peoples R China
[5] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, 29 Yudao St, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Dual generators; coral distance; self-attention module; adversarial networks; fault diagnosis; NEURAL-NETWORK; ADAPTATION; MACHINERY; MODEL;
D O I
10.1177/14759217231165223
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dataset in the application scenario of existing fault diagnosis methods is often balanced, while the data collected under actual working conditions are often imbalanced. Directly applying existing fault diagnosis methods to this scenario will lead to poor diagnosis effect. In view of the above problems, we proposed a method called dual generative adversarial networks (DGANs) combining conditional assistance and feature enhancement. The method uses data augmentation as a basic strategy to supplement imbalanced datasets by generating high-quality data. Firstly, a new generator is designed to build the basic framework by sharing the dual-branch deconvolutional neural networks, and combining the label auxiliary information and the coral distance loss function to ensure the diversity of generated samples. Secondly, a new discriminator was designed, which is based on deep convolutional neural networks and embedded with auxiliary classifiers, further expanding the function of the discriminator. Thirdly, the self-attention module is introduced into both the generator and the discriminator to enhance deep feature learning and improve the quality of generated samples; finally, the proposed method is experimentally validated on datasets of two different testbeds. The experimental results show that the proposed method can generate fake samples with rich diversity and high quality, using these samples to supplement the imbalanced dataset, the effect of imbalanced fault diagnosis has been substantially improved. This method can be used to solve the problem of fault diagnosis in the case of sample imbalance, which often exists in actual working conditions.
引用
收藏
页码:265 / 282
页数:18
相关论文
共 50 条
  • [41] Imbalanced sample fault diagnosis of rotating machinery using conditional variational auto-encoder generative adversarial network
    Wang, You-ren
    Sun, Guo-dong
    Jin, Qi
    APPLIED SOFT COMPUTING, 2020, 92
  • [42] Application of Generative Adversarial Networks for Intelligent Fault Diagnosis
    Cao, Sican
    Wen, Long
    Li, Xinyu
    Gao, Liang
    2018 IEEE 14TH INTERNATIONAL CONFERENCE ON AUTOMATION SCIENCE AND ENGINEERING (CASE), 2018, : 711 - 715
  • [43] Enhanced generative adversarial network for extremely imbalanced fault diagnosis of rotating machine
    Wang, Rugen
    Zhang, Shaohui
    Chen, Zhuyun
    Li, Weihua
    MEASUREMENT, 2021, 180
  • [44] Fault Diagnosis of Harmonic Drive With Imbalanced Data Using Generative Adversarial Network
    Yang, Guo
    Zhong, Yong
    Yang, Lie
    Tao, Hui
    Li, Jianying
    Du, Ruxu
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [45] Fault diagnosis method based on triple generative adversarial nets for imbalanced data
    Su, Changwei
    Wang, Xueren
    Liu, Ruijie
    Guo, Ziyi
    Sang, Shengtian
    Yu, Shuang
    Zhang, Haifeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (03)
  • [46] Statistics Enhancement Generative Adversarial Networks for Diverse Conditional Image Synthesis
    Zuo, Zhiwen
    Li, Ailin
    Wang, Zhizhong
    Zhao, Lei
    Dong, Jianfeng
    Wang, Xun
    Wang, Meng
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 6167 - 6180
  • [47] A conditional variational autoencoding generative adversarial networks with self-modulation for rolling bearing fault diagnosis
    Liu, Yunpeng
    Jiang, Hongkai
    Wang, Yanfeng
    Wu, Zhenghong
    Liu, Shaowei
    MEASUREMENT, 2022, 192
  • [48] Novel imbalanced fault diagnosis method based on generative adversarial networks with balancing serial CNN and Transformer (BCTGAN)
    Chen, Hualin
    Wei, Jianan
    Huang, Haisong
    Wen, Long
    Yuan, Yage
    Wu, Jinxing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258
  • [49] An Imbalanced Fault Diagnosis Method for Rolling Bearing Based on Semi-Supervised Conditional Generative Adversarial Network With Spectral Normalization
    Xu, Minqiu
    Wang, Youqing
    IEEE ACCESS, 2021, 9 (09): : 27736 - 27747
  • [50] Generalization of Deep Neural Networks for Imbalanced Fault Classification of Machinery Using Generative Adversarial Networks
    Wang, Jinrui
    Li, Shunming
    Han, Baokun
    An, Zenghui
    Bao, Huaiqian
    Ji, Shanshan
    IEEE ACCESS, 2019, 7 : 111168 - 111180