Comparative validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark

被引:29
|
作者
Wagner, Martin [1 ,2 ]
Mueller-Stich, Beat-Peter [1 ,2 ]
Kisilenko, Anna [1 ,2 ]
Tran, Duc [1 ,2 ]
Heger, Patrick [1 ]
Muendermann, Lars [3 ]
Lubotsky, David M. [1 ,2 ]
Mueller, Benjamin [1 ,2 ]
Davitashvili, Tornike [1 ,2 ]
Capek, Manuela [1 ,2 ]
Reinke, Annika [4 ,5 ,6 ]
Reid, Carissa [7 ]
Yu, Tong [8 ,9 ]
Vardazaryan, Armine [8 ,9 ]
Nwoye, Chinedu Innocent [8 ,9 ]
Padoy, Nicolas [8 ,9 ]
Liu, Xinyang [10 ]
Lee, Eung-Joo [11 ]
Disch, Constantin [12 ]
Meine, Hans [12 ,13 ]
Xia, Tong [14 ]
Jia, Fucang [14 ]
Kondo, Satoshi [15 ,27 ]
Reiter, Wolfgang [16 ]
Jin, Yueming [17 ]
Long, Yonghao [17 ]
Jiang, Meirui [17 ]
Dou, Qi [17 ]
Heng, Pheng Ann [17 ]
Twick, Isabell [18 ]
Kirtac, Kadir [18 ]
Hosgor, Enes [18 ]
Bolmgren, Jon Lindstro [18 ]
Stenzel, Michael [18 ]
von Siemens, Bjorn [18 ]
Zhao, Long [19 ]
Ge, Zhenxiao [19 ]
Sun, Haiming [19 ]
Xie, Di [19 ]
Guo, Mengqi [20 ]
Liu, Daochang [21 ]
Kenngott, Hannes G. [1 ]
Nickel, Felix [1 ]
von Frankenberg, Moritz [22 ]
Mathis-Ullrich, Franziska [23 ]
Kopp-Schneider, Annette [7 ]
Maier-Hein, Lena [4 ,5 ,6 ,24 ]
Speidel, Stefanie [25 ]
Bodenstedt, Sebastian [26 ]
机构
[1] Heidelberg Univ Hosp, Dept Gen Visceral & Transplantat Surg, Neuenheimer Feld 420, D-69120 Heidelberg, Germany
[2] Natl Ctr Tumor Dis NCT Heidelberg, Neuenheimer Feld 460, D-69120 Heidelberg, Germany
[3] KARL STORZ SE & Co KG, Corp Res & Technol, Data Assisted Solut, Dr Karl Storz Str 34, D-78332 Tuttlingen, Germany
[4] German Canc Res Ctr, Div Comp Assisted Med Intervent, Neuenheimer Feld 223, D-69120 Heidelberg, Germany
[5] German Canc Res Ctr, HIP Helmholtz Imaging Platform, Neuenheimer Feld 223, D-69120 Heidelberg, Germany
[6] Heidelberg Univ, Fac Math & Comp Sci, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[7] German Canc Res Ctr, Div Biostat, Neuenheimer Feld 280, Heidelberg, Germany
[8] Univ Strasbourg, ICube, CNRS, 300 Bd Sebastien Brant,CS 10413, F-67412 Illkirch Graffenstaden, France
[9] IHU Strasbourg, 1 Pl Hop, F-67000 Strasbourg, France
[10] Childrens Natl Hosp, Sheikh Zayed Inst Pediat Surg Innovat, 111 Michigan Ave NW, Washington, DC 20010 USA
[11] Univ Maryland, 2405 AV Williams Bldg, College Pk, MD 20742 USA
[12] Fraunhofer Inst Digital Med MEVIS, Max von Laue Str 2, D-28359 Bremen, Germany
[13] Univ Bremen, Med Image Comp Grp, Fraunhofer MEVIS, FB3, Fallturm 1, D-28359 Bremen, Germany
[14] Chinese Acad Sci, Shenzhen Inst Adv Technol, Lab Med Imaging & Digital Surg, Shenzhen 518055, Peoples R China
[15] Konika Minolta Inc, 1-2 Sakura Machi, Takatsuki, Osaka 5698503, Japan
[16] Wintegral GmbH, Ehrenbreitsteiner Str 36, D-80993 Munich, Germany
[17] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Sha Tin, Ho Sin Hang Engn Bldg, Hong Kong, Peoples R China
[18] Caresyntax GmbH, Komturstr 18A, D-12099 Berlin, Germany
[19] Hikvis Res Inst, Hangzhou, Peoples R China
[20] Natl Univ Singapore, Sch Comp, Comp 1, 13 Comp Dr, Singapore 117417, Singapore
[21] Peking Univ, Natl Engn Res Ctr Visual Technol, Sch Comp Sci, Beijing, Peoples R China
[22] Salem Hosp Evangel Stadtmiss Heidelberg, Dept Surg, Zeppelinstr 11-33, D-69121 Heidelberg, Germany
[23] Karlsruhe Inst Technol, Inst Anthropomat & Robot, Hlth Robot & Automat Lab, Geb 40-28,KIT Campus Sud,Engler Bunte Ring 8, D-76131 Karlsruhe, Germany
[24] Heidelberg Univ, Med Fac, Neuenheimer Feld 672, D-69120 Heidelberg, Germany
[25] Natl Ctr Tumor Dis Dresden, Div Translat Surg Oncol, Fetscherstr 74, D-01307 Dresden, Germany
[26] Tech Univ Dresden, Cluster Excellence Ctr Tactile Internet Human In, D-01062 Dresden, Germany
[27] Muroran Inst Technol, Muroran, Hokkaido 0508585, Japan
关键词
Surgical workflow analysis; Endoscopic vision; Surgical data science; Laparoscopic cholecystectomy; ARTIFICIAL-INTELLIGENCE; RECOGNITION; PERFORMANCE; CHALLENGE; TOOL;
D O I
10.1016/j.media.2023.102770
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Purpose: Surgical workflow and skill analysis are key technologies for the next generation of cognitive surgical assistance systems. These systems could increase the safety of the operation through context-sensitive warnings and semi-autonomous robotic assistance or improve training of surgeons via data-driven feedback. In surgical workflow analysis up to 91% average precision has been reported for phase recognition on an open data singlecenter video dataset. In this work we investigated the generalizability of phase recognition algorithms in a multicenter setting including more difficult recognition tasks such as surgical action and surgical skill. Methods: To achieve this goal, a dataset with 33 laparoscopic cholecystectomy videos from three surgical centers with a total operation time of 22 h was created. Labels included framewise annotation of seven surgical phases with 250 phase transitions, 5514 occurences of four surgical actions, 6980 occurences of 21 surgical instruments from seven instrument categories and 495 skill classifications in five skill dimensions. The dataset was used in the 2019 international Endoscopic Vision challenge, sub-challenge for surgical workflow and skill analysis. Here, 12 research teams trained and submitted their machine learning algorithms for recognition of phase, action, instrument and/or skill assessment. Results: F1-scores were achieved for phase recognition between 23.9% and 67.7% (n = 9 teams), for instrument presence detection between 38.5% and 63.8% (n = 8 teams), but for action recognition only between 21.8% and 23.3% (n = 5 teams). The average absolute error for skill assessment was 0.78 (n = 1 team). Conclusion: Surgical workflow and skill analysis are promising technologies to support the surgical team, but there is still room for improvement, as shown by our comparison of machine learning algorithms. This novel HeiChole benchmark can be used for comparable evaluation and validation of future work. In future studies, it is of utmost importance to create more open, high-quality datasets in order to allow the development of artificial intelligence and cognitive robotics in surgery.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Road Accident Severity Prediction - A Comparative Analysis of Machine Learning Algorithms
    Malik, Sumbal
    El Sayed, Hesham
    Khan, Manzoor Ahmed
    Khan, Muhammad Jalal
    2021 IEEE GLOBAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INTERNET OF THINGS (GCAIOT), 2021, : 69 - 74
  • [42] A Comparative Analysis of Machine Learning Algorithms to Predict Alzheimer's Disease
    Bari Antor, Morshedul
    Jamil, A. H. M. Shafayet
    Mamtaz, Maliha
    Monirujjaman Khan, Mohammad
    Aljahdali, Sultan
    Kaur, Manjit
    Singh, Parminder
    Masud, Mehedi
    JOURNAL OF HEALTHCARE ENGINEERING, 2021, 2021
  • [43] Genomic selection in pig breeding: comparative analysis of machine learning algorithms
    Su, Ruilin
    Lv, Jingbo
    Xue, Yahui
    Jiang, Sheng
    Zhou, Lei
    Jiang, Li
    Tan, Junyan
    Shen, Zhencai
    Zhong, Ping
    Liu, Jianfeng
    GENETICS SELECTION EVOLUTION, 2025, 57 (01)
  • [44] Machine Learning Classification Algorithms for Phishing Detection: A Comparative Appraisal and Analysis
    Gana, Noah Ndakotsu
    Abdulhamid, Shafi'I Muhammad
    2019 2ND INTERNATIONAL CONFERENCE OF THE IEEE NIGERIA COMPUTER CHAPTER (NIGERIACOMPUTCONF), 2019, : 19 - 26
  • [45] Comparative study of machine learning algorithms for Kannada twitter sentimental analysis
    Pushpa B. Patil
    Dakshayani Ijeri
    Shashikiran A. Kulkarni
    Sayed Salman Burkaposh
    Rani Bhuyyar
    Vijayalaxmi Gugawad
    Multimedia Tools and Applications, 2024, 83 : 45693 - 45713
  • [46] Comparative study of machine learning algorithms for Kannada twitter sentimental analysis
    Patil, Pushpa B.
    Ijeri, Dakshayani
    Kulkarni, Shashikiran A.
    Burkaposh, Sayed Salman
    Bhuyyar, Rani
    Gugawad, Vijayalaxmi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (15) : 45693 - 45713
  • [47] Comparative analysis of machine learning algorithms for predicting Dubai property prices
    Balila, Abdulsalam Elnaeem
    Bin Shabri, Ani
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2024, 10
  • [48] COMPARATIVE ANALYSIS OF SUPERVISED MACHINE LEARNING ALGORITHMS FOR HEART DISEASE DETECTION
    Huapaya, Hector Daniel
    Rodriguez, Ciro
    Esenarro, Doris
    3C TECNOLOGIA, 2020, : 233 - 247
  • [49] A Comparative Classification Analysis of Abdominal Aortic Aneurysms by Machine Learning Algorithms
    Rengarajan, Balaji
    Wu, Wei
    Wiedner, Crystal
    Ko, Daijin
    Muluk, Satish C.
    Eskandari, Mark K.
    Menon, Prahlad G.
    Finol, Ender A.
    ANNALS OF BIOMEDICAL ENGINEERING, 2020, 48 (04) : 1419 - 1429
  • [50] Comparative Analysis of Machine Learning Algorithms for Investigating Myocardial Infarction Complications
    Satty, Ali
    Salih, Mohyaldein M. Y.
    Hassaballa, Abaker A.
    Gumma, Elzain A. E.
    Abdallah, Ahmed
    Khamis, Gamal Saad Mohamed
    ENGINEERING TECHNOLOGY & APPLIED SCIENCE RESEARCH, 2024, 14 (01) : 12775 - 12779