Combining multi-fidelity modelling and asynchronous batch Bayesian Optimization

被引:13
|
作者
Folch, Jose Pablo [1 ]
Lee, Robert M. [2 ]
Shafei, Behrang [2 ]
Walz, David [2 ]
Tsay, Calvin [1 ]
van der Wilk, Mark [1 ]
Misener, Ruth [1 ]
机构
[1] Imperial Coll London, London, England
[2] BASF SE, Ludwigshafen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Bayesian Optimization; Machine learning; Batch optimization; Asynchronous; Multi-fidelity; GLOBAL OPTIMIZATION; DESIGN; BATTERIES; LOOP;
D O I
10.1016/j.compchemeng.2023.108194
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behaviour, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Multi-fidelity Bayesian neural networks: Algorithms and applications
    Meng, Xuhui
    Babaee, Hessam
    Karniadakis, George Em
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 438
  • [42] A Multi-Fidelity Bayesian Approach to Safe Controller Design
    Lau, Ethan
    Srivastava, Vaibhav
    Bopardikar, Shaunak D. D.
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 2904 - 2909
  • [43] Adaptive Objective Selection for Multi-Fidelity Optimization
    Akimoto, Youhei
    Shimizu, Takuma
    Yamaguchi, Takahiro
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 880 - 888
  • [44] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    Chinese Journal of Aeronautics , 2013, (02) : 279 - 286
  • [45] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    Chinese Journal of Aeronautics, 2013, 26 (02) : 279 - 286
  • [46] Multi-fidelity modeling and optimization of biogas plants
    Zaefferer, Martin
    Gaida, Daniel
    Bartz-Beielstein, Thomas
    APPLIED SOFT COMPUTING, 2016, 48 : 13 - 28
  • [47] Research on multi-fidelity aerodynamic optimization methods
    Huang Likeng
    Gao Zhenghong
    Zhang Dehu
    CHINESE JOURNAL OF AERONAUTICS, 2013, 26 (02) : 279 - 286
  • [48] TOPFARM: Multi-fidelity optimization of wind farms
    Rethore, Pierre-Elouan
    Fuglsang, Peter
    Larsen, Gunner C.
    Buhl, Thomas
    Larsen, Torben J.
    Madsen, Helge A.
    WIND ENERGY, 2014, 17 (12) : 1797 - 1816
  • [49] MULTI-FIDELITY DISCRETE OPTIMIZATION VIA SIMULATION
    Li, Dongyang
    Liu, Haitao
    Jin, Xiao
    Li, Haobin
    Chew, Ek Peng
    Tan, Kok Choon
    Lin, Yun Hui
    2022 WINTER SIMULATION CONFERENCE (WSC), 2022, : 3170 - 3181
  • [50] ROBUST DESIGN OPTIMIZATION OF A COMPRESSOR ROTOR USING RECURSIVE COKRIGING BASED MULTI-FIDELITY UNCERTAINTY QUANTIFICATION AND MULTI-FIDELITY OPTIMIZATION
    Wiegand, Marcus
    Prots, Andriy
    Meyer, Marcus
    Schmidt, Robin
    Voigt, Matthias
    Mailach, Ronald
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,