Combining multi-fidelity modelling and asynchronous batch Bayesian Optimization

被引:13
|
作者
Folch, Jose Pablo [1 ]
Lee, Robert M. [2 ]
Shafei, Behrang [2 ]
Walz, David [2 ]
Tsay, Calvin [1 ]
van der Wilk, Mark [1 ]
Misener, Ruth [1 ]
机构
[1] Imperial Coll London, London, England
[2] BASF SE, Ludwigshafen, Germany
基金
英国工程与自然科学研究理事会;
关键词
Bayesian Optimization; Machine learning; Batch optimization; Asynchronous; Multi-fidelity; GLOBAL OPTIMIZATION; DESIGN; BATTERIES; LOOP;
D O I
10.1016/j.compchemeng.2023.108194
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Bayesian Optimization is a useful tool for experiment design. Unfortunately, the classical, sequential setting of Bayesian Optimization does not translate well into laboratory experiments, for instance battery design, where measurements may come from different sources and their evaluations may require significant waiting times. Multi-fidelity Bayesian Optimization addresses the setting with measurements from different sources. Asynchronous batch Bayesian Optimization provides a framework to select new experiments before the results of the prior experiments are revealed. This paper proposes an algorithm combining multi-fidelity and asynchronous batch methods. We empirically study the algorithm behaviour, and show it can outperform single-fidelity batch methods and multi-fidelity sequential methods. As an application, we consider designing electrode materials for optimal performance in pouch cells using experiments with coin cells to approximate battery performance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Batch Multi-Fidelity Bayesian Optimization with Deep Auto-Regressive Networks
    Li, Shibo
    Kirby, Robert M.
    Zhe, Shandian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [2] Multi-fidelity Bayesian algorithm for antenna optimization
    Li, Jianxing
    Yang, An
    Tian, Chunming
    Ye, Le
    Chen, Badong
    JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS, 2022, 33 (06) : 1119 - 1126
  • [3] Multi-fidelity Bayesian algorithm for antenna optimization
    LI Jianxing
    YANG An
    TIAN Chunming
    YE Le
    CHEN Badong
    Journal of Systems Engineering and Electronics, 2022, 33 (06) : 1119 - 1126
  • [4] Multi-fidelity optimization via surrogate modelling
    Forrester, Alexander I. J.
    Sobester, Andras
    Keane, Andy J.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2088): : 3251 - 3269
  • [5] Multi-fidelity Bayesian Optimization of SWATH Hull Forms
    Bonfiglio, Luca
    Perdikaris, Paris
    Brizzolara, Stefano
    JOURNAL OF SHIP RESEARCH, 2020, 64 (02): : 154 - 170
  • [6] Practical Multi-fidelity Bayesian Optimization for Hyperparameter Tuning
    Wu, Jian
    Toscano-Palmerin, Saul
    Frazier, Peter, I
    Wilson, Andrew Gordon
    35TH UNCERTAINTY IN ARTIFICIAL INTELLIGENCE CONFERENCE (UAI 2019), 2020, 115 : 788 - 798
  • [7] Multi-fidelity cost-aware Bayesian optimization
    Foumani, Zahra Zanjani
    Shishehbor, Mehdi
    Yousefpour, Amin
    Bostanabad, Ramin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 407
  • [8] Transferable Multi-Fidelity Bayesian Optimization for Radio Resource Management
    Zhang, Yunchuan
    Park, Sangwoo
    Simeone, Osvaldo
    2024 IEEE 25TH INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS, SPAWC 2024, 2024, : 176 - 180
  • [9] A General Framework for Multi-fidelity Bayesian Optimization with Gaussian Processes
    Song, Jialin
    Chen, Yuxin
    Yue, Yisong
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [10] Multi-Fidelity Bayesian Optimization via Deep Neural Networks
    Li, Shibo
    Xing, Wei
    Kirby, Robert M.
    Zhe, Shandian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33