A room temperature rechargeable Li2O-based lithium-air battery enabled by a solid electrolyte

被引:132
|
作者
Kondori, Alireza [1 ]
Esmaeilirad, Mohammadreza [1 ]
Harzandi, Ahmad Mosen [1 ]
Amine, Rachid [2 ]
Saray, Mahmoud Tamadoni [3 ]
Yu, Lei [4 ]
Liu, Tongchao [5 ]
Wen, Jianguo [4 ]
Shan, Nannan [2 ,6 ]
Wang, Hsien-Hau [2 ]
Ngo, Anh T. [2 ,6 ]
Redfern, Paul C. [2 ]
Johnson, Christopher S. [5 ]
Amine, Khalil [5 ,7 ,8 ]
Shahbazian-Yassar, Reza [3 ]
Curtiss, Larry A. [2 ]
Asadi, Mohammad [1 ]
机构
[1] IIT, Dept Chem & Biol Engn, Chicago, IL 60616 USA
[2] Argonne Natl Lab, Mat Sci Div, Lemont, IL 60439 USA
[3] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[4] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[5] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[6] Univ Illinois, Dept Chem Engn, Chicago, IL 60607 USA
[7] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
[8] Imam Abdulrahman Bin Faisal Univ IAU, Inst Res & Med Consultat IRMC, Dammam, Saudi Arabia
基金
美国国家科学基金会;
关键词
LONG CYCLE LIFE; HIGH-ENERGY-DENSITY; CHARGE-TRANSPORT; OXYGEN BATTERY; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; STATE; SUPEROXIDE; COMPOSITE; PERFORMANCE;
D O I
10.1126/science.abq1347
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
A lithium-air battery based on lithium oxide (Li2O) formation can theoretically deliver an energy density that is comparable to that of gasoline. Lithium oxide formation involves a four-electron reaction that is more difficult to achieve than the one-and two-electron reaction processes that result in lithium superoxide (LiO2) and lithium peroxide (Li2O2), respectively. By using a composite polymer electrolyte based on Li10GeP2S12 nanoparticles embedded in a modified polyethylene oxide polymer matrix, we found that Li2O is the main product in a room temperature solid-state lithium-air battery. The battery is rechargeable for 1000 cycles with a low polarization gap and can operate at high rates. The four-electron reaction is enabled by a mixed ion-electron-conducting discharge product and its interface with air.
引用
收藏
页码:499 / 504
页数:6
相关论文
共 50 条
  • [41] A lithium-air battery with a potential to continuously reduce O2 from air for delivering energy
    Wang, Yonggang
    Zhou, Haoshen
    JOURNAL OF POWER SOURCES, 2010, 195 (01) : 358 - 361
  • [42] Electrodes-electrolyte interfacial engineering for realizing room temperature lithium metal battery based on garnet structured solid fast Li+ conductors
    Alexander, George Vadakkethalakel
    Patra, Srabani
    Valiyaveetil, Sona
    Raj, Sobhan
    Sugumar, Manoj Krishna
    Din, Mir Mehraj Ud
    Murugan, Ramaswamy
    JOURNAL OF POWER SOURCES, 2018, 396 : 764 - 773
  • [43] B2O3-added lithium aluminium germanium phosphate solid electrolyte for Li-O2 rechargeable batteries
    Jadhav, Harsharaj S.
    Kalubarme, Ramchandra S.
    Jang, Seong-Yong
    Jung, Kyu-Nam
    Shin, Kyoung-Hee
    Park, Chan-Jin
    DALTON TRANSACTIONS, 2014, 43 (30) : 11723 - 11727
  • [44] Enhancement of catalytic centres by RuO2 addition to CuFe2O4 cathode catalyst for rechargeable lithium-air batteries: influence of CO2 on Li-O2 battery performances
    Pamangadan, C. Sharafudeen
    Elumalai, Perumal
    SUSTAINABLE ENERGY & FUELS, 2024, 8 (23): : 5581 - 5594
  • [45] Dual-electrolyte lithium-air batteries: influence of catalyst, temperature, and solid-electrolyte conductivity on the efficiency and power density
    Li, Longjun
    Manthiram, Arumugam
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (16) : 5121 - 5127
  • [46] Evidence of catalyzed oxidation of Li2O2 for rechargeable Li-air battery applications
    Harding, Jonathon R.
    Lu, Yi-Chun
    Tsukada, Yasuhiro
    Shao-Horn, Yang
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (30) : 10540 - 10546
  • [47] Development of free-standing phosphate/polymer composite electrolyte films for room temperature operating Li+ rechargeable solid-state battery
    Park, Hyemin
    Lee, Eun Gyu
    Kim, Doyoub
    Kang, Yongku
    Choi, Sungho
    SOLID STATE IONICS, 2020, 344
  • [48] RECHARGEABLE LI/LIMN2O4 BATTERIES WITH A POLYMERIC SOLID ELECTROLYTE
    XU, QZ
    WAN, GX
    JOURNAL OF POWER SOURCES, 1993, 41 (03) : 315 - 320
  • [49] Interfacial fluoride engineering enabled robust LiF-rich solid electrolyte interphase to reduce active lithium loss in rechargeable lithium battery
    Jia, Tianqi
    Zhong, Geng
    Lu, Sirong
    Ren, Xiaolong
    Lv, Yao
    Li, Nanrui
    Yin, Rui
    Kang, Guohuang
    Cai, Kangning
    Kang, Feiyu
    Cao, Yidan
    Chemical Engineering Journal, 2023, 454
  • [50] Interfacial fluoride engineering enabled robust LiF-rich solid electrolyte interphase to reduce active lithium loss in rechargeable lithium battery
    Jia, Tianqi
    Zhong, Geng
    Lu, Sirong
    Ren, Xiaolong
    Lv, Yao
    Li, Nanrui
    Yin, Rui
    Kang, Guohuang
    Cai, Kangning
    Kang, Feiyu
    Cao, Yidan
    CHEMICAL ENGINEERING JOURNAL, 2023, 454