Representations and cohomologies of modified λ-differential Hom-Lie algebras

被引:0
|
作者
Xiao, Yunpeng [1 ]
Teng, Wen [2 ]
机构
[1] Guizhou Normal Univ, Sch Math Sci, Guiyang 550025, Peoples R China
[2] Guizhou Univ Finance & Econ, Sch Math & Stat, Guiyang 550025, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 02期
关键词
Hom-Lie algebras; modified lambda-differential operator; cohomology; extension; Hom-Lie; 2-algebras; DEFORMATIONS; EXTENSIONS;
D O I
10.3934/math.2024213
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept and representations of modified lambda-differential Hom -Lie algebras. We then develop the cohomology of modified lambda-differential Hom-Lie algebras with coefficients in a suitable representation. As applications, abelian extensions and skeletal modified lambda -differential Hom-Lie 2-algebras are characterized in terms of cohomology groups.
引用
收藏
页码:4309 / 4325
页数:17
相关论文
共 50 条
  • [41] On universal central extensions of Hom-Lie algebras
    Casas, J. M.
    Insua, M. A.
    Pacheco, N.
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (02): : 277 - 288
  • [42] The Hom-Yang-Baxter equation and Hom-Lie algebras
    Yau, Donald
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (05)
  • [43] Geometry of Almost Kenmotsu Hom-Lie Algebras
    Nourmohammadifar, L.
    Peyghan, E.
    Uddin, S.
    QUAESTIONES MATHEMATICAE, 2022, 45 (04) : 605 - 626
  • [44] Ado theorem for nilpotent Hom-Lie algebras
    Makhlouf, Abdenacer
    Zusmanovich, Pasha
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2019, 29 (07) : 1343 - 1365
  • [45] Extensions of hom-Lie algebras in terms of cohomology
    Abdoreza R. Armakan
    Mohammed Reza Farhangdoost
    Czechoslovak Mathematical Journal, 2017, 67 : 317 - 328
  • [46] Extensions of hom-Lie algebras in terms of cohomology
    Armakan, Abdoreza R.
    Farhangdoost, Mohammed Reza
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2017, 67 (02) : 317 - 328
  • [47] Cohomology and deformations of compatible Hom-Lie algebras
    Das, Apurba
    JOURNAL OF GEOMETRY AND PHYSICS, 2023, 192
  • [48] Regular Hom-Lie structures on incidence algebras
    Fornaroli, Erica Z.
    Khrypchenko, Mykola
    Santulo Jr, Ednei A. A.
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (03)
  • [49] Regular Hom-Lie structures on incidence algebras
    Érica Z. Fornaroli
    Mykola Khrypchenko
    Ednei A. Santulo
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2023, 117
  • [50] Enveloping algebras for Hom-Lie algebras in Hom-Yetter-Drinfeld categories
    Wang, Shengxiang
    Zhang, Xiaohui
    Guo, Shuangjian
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 102 (1-2): : 1 - 31