Comparative study of the effects of ignition location on the flame propagation characteristics and spectral properties of a methane-air premixed gas in a vertical pipeline

被引:6
|
作者
Wang, Qiuhong [1 ]
Yan, Yuchen [1 ]
Yang, Songping [1 ]
Shu, Chi-Min [2 ]
Jiang, Juncheng [3 ]
Wang, Qingfeng [4 ]
Yu, Chengfeng [1 ]
Zhu, Leilei [1 ]
机构
[1] Xian Univ Sci & Technol, Coll Safety Sci & Engn, Xian 710054, Peoples R China
[2] Natl Yunlin Univ Sci & Technol, Proc Safety & Disaster Prevent Lab, Yunlin 64002, Taiwan
[3] Nanjing Tech Univ, Coll Safety Sci & Engn, Nanjing 210009, Jiangsu, Peoples R China
[4] Xian Univ Sci & Technol, Xian 710054, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Methane explosion; Ignition location; Flame propagation behavior; Explosion pressure; Free radicals; EXPLOSION CHARACTERISTICS; PRESSURE; MIXTURES; MECHANISM; OBSTACLES; VELOCITY; POSITION; VESSEL; MODEL; ZONE;
D O I
10.1016/j.joei.2023.101508
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Methane is an explosion hazard during its pipeline transportation and distribution. This study investigated the characteristics of methane explosions in a vertical pipeline for various ignition locations and methane concentrations. Flame propagation properties were more sensitive to methane concentration changes in central ignition than in bottom ignition; in lean fuel -air mixtures, they were more sensitive to methane concentration changes than in rich fuel -air mixtures. Because the central ignition flame burned over a larger area, it shows more explosive intensity than the bottom ignition. At methane concentration of 10 vol%, the maximum pressure (Pmax) and maximum pressure increase ((dP/dt)max) of the central ignition increased by 6.2 % and 44.2 %, respectively, compared with that of the bottom ignition, and the time to reach the peak explosion pressure (tP) was advanced by 14.6 %. Bottom ignition showed faster maximum flame velocity (vmax) and flame pattern change, higher maximum flame temperature (Tmax), and stronger OH center dot peak intensity than central ignition. When the flame velocities were all upward, vmax was most significantly reduced by 64.6 % when the methane concentration was 8 vol% compared with the bottom ignition. At a methane concentration of 10 vol%, Tmax, OH center dot peak signal intensity and OH center dot signal duration increased by 2.2 %, 1.3 %, and 39.5 %, respectively, for the bottom ignition compared to the central ignition. The experimental results of this study can be used as a reference to design targeted measures for preventing methane explosions in pipelines and to develop new methane explosion suppressants.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Effects of hydrogen addition and nitrogen dilution on the laminar flame characteristics of premixed methane-air flames
    Tahtouh, T.
    Halter, F.
    Samson, E.
    Mounaim-Rousselle, C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (19) : 8329 - 8338
  • [22] Experimental study on characteristics of flame propagation and pressure development evolution during methane-air explosion in different pipeline structures
    Si, Rongjun
    Zhang, Leilin
    Niu, Yihui
    Wang, Lei
    Huang, Zichao
    Jia, Quansheng
    Li, Ziran
    FRONTIERS IN EARTH SCIENCE, 2024, 12
  • [23] Flame characteristics of hydrogen-enriched methane-air premixed swirling flames
    Kim, Han S.
    Arghode, Vaibhav K.
    Gupta, Ashwani K.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (02) : 1063 - 1073
  • [24] Impacts of Rectangular Obstacle Lengths on Premixed Methane-Air Flame Propagation in a Closed Tube
    Luo, G.
    Tu, J-Q
    Qian, Y-L
    Jin, K-K
    Ye, T-J
    Bai, Y.
    Gao, S.
    COMBUSTION EXPLOSION AND SHOCK WAVES, 2022, 58 (01) : 10 - 21
  • [25] EFFECTS OF ELECTRIC-FIELDS ON THE FLAME PROPAGATION VELOCITY OF METHANE-AIR FLAME
    NOORANI, RI
    HOLMES, RE
    AIAA JOURNAL, 1986, 24 (01) : 190 - 192
  • [26] Ignition and flame propagation in methane-air multi-stratified vortical flow field
    Umeda, Y
    Fujiwara, T
    COMBUSTION SCIENCE AND TECHNOLOGY, 1996, 115 (4-6) : 391 - 418
  • [27] Exceptional Performance of Flame-Retardant Polyurethane Foam: The Suppression Effect on Explosion Pressure and Flame Propagation of Methane-Air Premixed Gas
    Li, Changhua
    Zhang, Guangyi
    Yuan, Bihe
    MATERIALS, 2023, 16 (24)
  • [28] Effects of obstacle on premixed flame microstructure and flame propagation in methane/air explosion
    Yang, Y
    Zhu, HQ
    Liu, JZ
    THEORY AND PRACTICE OF ENERGETIC MATERIALS, VOL 5, PARTS A AND B, 2003, : 587 - 592
  • [29] Effects of Turbulence on Ignition of Methane-Air and n-Heptane-Air Fully Premixed Mixtures
    Saito, Naoyuki
    Minamoto, Yuki
    Yenerdag, Basmil
    Shimura, Masayasu
    Tanahashi, Mamoru
    COMBUSTION SCIENCE AND TECHNOLOGY, 2018, 190 (03) : 451 - 469
  • [30] Obstacle Impacts on Methane-Air Flame Propagation Properties in Straight Pipes
    Shirzaei, Mohammadreza
    Zanganeh, Jafar
    Moghtaderi, Behdad
    FIRE-SWITZERLAND, 2023, 6 (04):