Variable-Step-Size Efficient Proportionate Affine Projection Sign Algorithms

被引:0
|
作者
Li, Guoliang [1 ,2 ]
Zhou, Xingli [1 ,2 ]
Cao, Xin [2 ,3 ]
Zhang, Hongbin [1 ]
Lawrynczuk, Maciej
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Southwest Univ Sci & Technol, Sch Informat Engn, Mianyang 621010, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Sci & Engn, Chengdu 610054, Peoples R China
关键词
sparse system identification; proportionate; combined-step-size; convergence rate; ROBUST;
D O I
10.3390/electronics13010109
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For sparse system identification, a memory-improved proportionate affine projection sign algorithm with a simplified, generalized correntropy induced metric (SGCI-M-IPAPSA) has good filtering performance. However, the SGCI-M-IPAPSA is based on a fixed step size and is not always the best choice. To overcome the limitation of a fixed step size in filtering precision and convergence speed under non-Gaussian impulsive interferences, in this paper, we apply the combined-step-size idea and a variable-step-size method based on the mean-square deviation to the SGCI-M-IPAPSA, respectively, and propose two new robust algorithms to enhance the filtering performance of the SGCI-M-IPAPSA. In addition, by combining the combined-step-size and proposed variable-step-size methods, we propose a fresh combined variable-step-size way and apply it to the SGCI-M-IPAPSA. The convergence of the proposed algorithms is also elaborated, and a conditional decision on the mean-square error is used to cope with abrupt changes. The better performances of the proposed algorithms than the conventional SGCI-M-IPAPSA in terms of the filtering accuracy and convergence rate are demonstrated with non-Gaussian impulsive interferences for sparse system identification, abrupt changes and colored inputs.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] COMPLEX PROPORTIONATE-TYPE AFFINE PROJECTION ALGORITHMS
    Wagner, Kevin T.
    Doroslovacki, Milos I.
    2013 ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS, 2013, : 1510 - 1514
  • [32] Parameter estimation and tracking of sinusoid using variable-step-size LMS algorithms
    Garg, Rohit
    Kohli, Amit Kumar
    OPTIK, 2016, 127 (22): : 10953 - 10960
  • [33] Set-Membership Proportionate Affine Projection Algorithms
    Werner, Stefan
    Apolinario, Jose A., Jr.
    Diniz, Paulo S. R.
    EURASIP JOURNAL ON AUDIO SPEECH AND MUSIC PROCESSING, 2007, 2007 (1)
  • [34] Evolutionary and variable step size strategies for multichannel filtered-x affine projection algorithms
    Gonzalez, Alberto
    Albu, Felix
    Ferrer, Miguel
    de Diego, Maria
    IET SIGNAL PROCESSING, 2013, 7 (06) : 471 - 476
  • [35] Set-Membership Proportionate Affine Projection Algorithms
    Stefan Werner
    José A Apolinário
    Paulo S R Diniz
    EURASIP Journal on Audio, Speech, and Music Processing, 2007
  • [36] Combined boosted variable step-size affine projection sign algorithm for environments with impulsive noise
    Chien, Ying-Ren
    Xu, Sendren Sheng-Dong
    Ho, Ding-Yang
    DIGITAL SIGNAL PROCESSING, 2023, 140
  • [37] VARIABLE-STEP-SIZE ROBUST DELTA MODULATOR
    SONG, C
    SCHILLIN.DL
    GARODNIC.J
    IEEE TRANSACTIONS ON COMMUNICATION TECHNOLOGY, 1971, CO19 (06): : 1033 - &
  • [38] A variable step-size diffusion affine projection algorithm
    Yoo, J. W.
    Song, I. S.
    Shin, J. W.
    Park, P. G.
    INTERNATIONAL JOURNAL OF COMMUNICATION SYSTEMS, 2016, 29 (05) : 1012 - 1025
  • [39] Subband Affine Projection Algorithm Using Variable Step Size
    Choi, Hun
    Bae, Hyeon-Deok
    JOURNAL OF THE ACOUSTICAL SOCIETY OF KOREA, 2007, 26 (02): : 69 - 74
  • [40] Gradient Controlled Improved Proportionate Affine Projection Sign Algorithm
    Salman, Murat Babek
    Ciloglu, Tolga
    2018 26TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2018,