EXISTENCE OF TRAVELING WAVE SOLUTIONS FOR AN INFECTION-AGE STRUCTURED MODEL WITH POPULATION DIFFUSION

被引:0
|
作者
Zhang, Tianran [1 ]
Wang, Wendi [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2024年 / 17卷 / 04期
基金
中国国家自然科学基金;
关键词
Spatial epidemic; critical speed; age structure; bounded; MATHEMATICAL-THEORY; SPREADING SPEED; EPIDEMIC MODEL; SIR MODEL;
D O I
10.3934/dcdss.2023167
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper studies an epidemic model that incorporates the population diffusion and infection age. The threshold conditions for the existence of traveling wave solutions are established, which answer two open problems in Ducrot and Magal (Nonlinearity, 24 (2011), 2891-2911). More specifically, the restriction for the diffusion coefficients of susceptible population and infectious population is removed and the existence of traveling wave solution with critical wave speed is obtained.
引用
收藏
页码:1485 / 1496
页数:12
相关论文
共 50 条
  • [21] Traveling Wave Solutions in a Stage-Structured Delayed Reaction-Diffusion Model with Advection
    Zhang, Liang
    Zhao, Huiyan
    MATHEMATICAL MODELLING AND ANALYSIS, 2015, 20 (02) : 168 - 187
  • [22] Nonlinear stability of traveling wavefronts in an age-structured reaction-diffusion population model
    Li, Guangrui
    Mei, Ming
    Wong, Yau Shu
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2008, 5 (01) : 85 - 100
  • [23] EXISTENCE AND STABILITY OF TRAVELING-WAVE SOLUTIONS FOR A POPULATION GENETIC MODEL VIA SINGULAR PERTURBATIONS
    DOCKERY, JD
    LUI, R
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1994, 54 (01) : 231 - 248
  • [24] Hopf bifurcation of an infection-age structured eco-epidemiological model with saturation incidence
    Yang, Peng
    Wang, Yuanshi
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 477 (01) : 398 - 419
  • [25] Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate
    Liu, ZhiHua
    Yuan, Rong
    SCIENCE CHINA-MATHEMATICS, 2017, 60 (08) : 1371 - 1398
  • [26] Existence of traveling wave solutions to reaction-diffusion-ODE systems with hysteresis
    Hou, Lingling
    Kokubu, Hiroshi
    Marciniak-Czochra, Anna
    Takagi, Izumi
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 364 : 667 - 713
  • [27] Existence of Traveling Wave Solutions of a Kind of Reaction-diffusion Equations with Delays
    Yang, Zhiguo
    2013 SIXTH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL INTELLIGENCE (ICACI), 2013, : 376 - 380
  • [28] Existence of traveling wave solutions for density-dependent diffusion competitive systems
    Wang, Yang
    Lv, Xuanyu
    Liu, Fan
    Zhang, Xiaoguang
    NONLINEARITY, 2024, 37 (09)
  • [29] Existence of traveling wave solutions for a reaction-diffusion equation with distributed delays
    Peng, Yahong
    Song, Yongli
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (08) : 2415 - 2423
  • [30] Zero-Hopf bifurcation for an infection-age structured epidemic model with a nonlinear incidence rate
    ZhiHua Liu
    Rong Yuan
    Science China Mathematics, 2017, 60 : 1371 - 1398