A machine-learning approach for disease prediction can reduce misclassification and improve GWAS and polygenic scores

被引:0
|
作者
Eick, Lisa [1 ]
Cordioli, Mattia [1 ]
Jukarainen, Sakari [1 ]
Ganna, Andrea [1 ]
机构
[1] Inst Mol Med Finland, Helsinki, Finland
关键词
D O I
暂无
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
C18.4
引用
收藏
页码:52 / 52
页数:1
相关论文
共 50 条
  • [41] Holistic Prediction of the pKa in Diverse Solvents Based on a Machine-Learning Approach
    Yang, Qi
    Li, Yao
    Yang, Jin-Dong
    Liu, Yidi
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (43) : 19282 - 19291
  • [42] Towards a Machine-learning Approach for Sickness Prediction in 360° Stereoscopic Videos
    Padmanaban, Nitish
    Ruban, Timon
    Sitzmann, Vincent
    Norcia, Anthony M.
    Wetzstein, Gordon
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (04) : 1594 - 1603
  • [43] A MACHINE-LEARNING APPROACH TOWARDS SOLVING THE INVOICE PAYMENT PREDICTION PROBLEM
    Schoonbee, L.
    Moore, W. R.
    Van Vuuren, J. H.
    SOUTH AFRICAN JOURNAL OF INDUSTRIAL ENGINEERING, 2022, 33 (04) : 126 - 146
  • [44] Lipidomics Prediction of Parkinson's Disease Severity: A Machine-Learning Analysis
    Avisar, Hila
    Guardia-Laguarta, Cristina
    Area-Gomez, Estela
    Surface, Matthew
    Chan, Amanda K.
    Alcalay, Roy N.
    Lerner, Boaz
    JOURNAL OF PARKINSONS DISEASE, 2021, 11 (03) : 1141 - 1155
  • [45] Machine-learning Algorithms for Ischemic Heart Disease Prediction: A Systematic Review
    Hani, Salam H. Bani
    Ahmad, Muayyad M.
    CURRENT CARDIOLOGY REVIEWS, 2023, 19 (01) : 87 - 99
  • [46] Polygenic risk scores outperform machine learning methods in predicting coronary artery disease status
    Gola, Damian
    Erdmann, Jeannette
    Mueller-Myhsok, Bertram
    Schunkert, Heribert
    Koenig, Inke R.
    GENETIC EPIDEMIOLOGY, 2020, 44 (02) : 125 - 138
  • [47] INVESTIGATION OF PATHWAY-BASED POLYGENIC RISK SCORES USING MACHINE LEARNING PREDICTION AND CLASSIFICATION SCHEMES
    Panagiotaropoulou, Georgia
    Ripke, Stephan
    Baker, Emily
    Escott-Price, Valentina
    EUROPEAN NEUROPSYCHOPHARMACOLOGY, 2019, 29 : S229 - S230
  • [48] Innovative approaches to atrial fibrillation prediction: should polygenic scores and machine learning be implemented in clinical practice?
    Petzl, Adrian M.
    Jabbour, Gilbert
    Cadrin-Tourigny, Julia
    Purerfellner, Helmut
    Macle, Laurent
    Khairy, Paul
    Avram, Robert
    Tadros, Rafik
    EUROPACE, 2024, 26 (08):
  • [49] Development and validation of a machine-learning prediction model to improve abdominal aortic aneurysm screening
    Salzler, Gregory G.
    Ryer, Evan J.
    Abdu, Robert W.
    Lanyado, Alon
    Sagiv, Tal
    Choman, Eran N.
    Tariq, Abdul A.
    Urick, Jim
    Mitchell, Elliot G.
    Maff, Rebecca M.
    Delong, Grant
    Shriner, Stacey L.
    Elmore, James R.
    Hasharon, Hod
    JOURNAL OF VASCULAR SURGERY, 2024, 79 (04) : 776 - 783
  • [50] RobustSTL and Machine-Learning Hybrid to Improve Time Series Prediction of Base Station Traffic
    Lin, Chih-Hsueh
    Nuha, Ulin
    ELECTRONICS, 2022, 11 (08)