Explainable machine learning for motor fault diagnosis

被引:3
|
作者
Wang, Yuming [1 ]
Wang, Peng [1 ,2 ]
机构
[1] Univ Kentucky, Dept Elect & Comp Engn, Lexington, KY 40506 USA
[2] Univ Kentucky, Dept Mech & Aerosp Engn, Lexington, KY 40506 USA
基金
美国国家科学基金会;
关键词
Explainable Machine Learning; Fault Diagnosis; Neural Network; Shapley Additive Explanations;
D O I
10.1109/I2MTC53148.2023.10175895
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Industrial motors have been widely used in various fields such as power generation, mining, and manufacturing. Various motor faults and time-consuming motor maintenance processes will lead to serious economic losses in this context. Different sensing technologies, including acceleration, acoustic, and current sensing can be useful in motor condition monitoring, defect detection, and diagnosis. Regarding sensing data analytics, Machine Learning (ML) and Deep Learning (DL) techniques have been increasingly investigated, because of their promising capabilities in complex data characterization and pattern recognition. However, the explainability of ML and DL models and their decision-making remains a challenge, because of their black-box modeling by nature. Shapley Additive Explanations (SHAP), as a game theoretic approach, provides a way to explain ML and DL modeling results, by allocating credits (known as SHAP values) through local connections to quantify the contributions of input features to model outputs. In this paper, three commonly seen ML techniques, including Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN) are investigated for vibration-based motor fault diagnosis. Corresponding SHAP explanation methods are applied to the three ML techniques to discover the most important vibration features in detecting motor conditions and differentiating faults. Explanation results from the three ML techniques demonstrate great consensus: average vibration frequency contributes most to motor fault diagnosis. This explanation conclusion matches the physical understanding that fault occurrences would bring in additional frequency components to the spectrum. Improving the physical explainability of ML and DL techniques would significantly improve their credibility and generalizability.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] RETRACTED: Application of CNN-Based Machine Learning in the Study of Motor Fault Diagnosis (Retracted Article)
    Peng, Xiuyan
    Wei, Lunpan
    Gao, Wei
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [32] Learning local discriminative representations via extreme learning machine for machine fault diagnosis
    Li, Yue
    Zeng, Yijie
    Qing, Yuanyuan
    Huang, Guang-Bin
    NEUROCOMPUTING, 2020, 409 (409) : 275 - 285
  • [33] Fault Diagnosis of Rotating Machine Using an Indirect Observer and Machine Learning
    TayebiHaghighi, Shahnaz
    Koo, Insoo
    11TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE: DATA, NETWORK, AND AI IN THE AGE OF UNTACT (ICTC 2020), 2020, : 277 - 282
  • [34] Fault Diagnosis of Analog Circuits Based on Machine Learning
    Huang, Ke
    Stratigopoulos, Haralampos-G.
    Mir, Salvador
    2010 DESIGN, AUTOMATION & TEST IN EUROPE (DATE 2010), 2010, : 1761 - 1766
  • [35] Mechanical Fault Diagnosis Method based on Machine Learning
    Nan, Zhang
    2015 SEVENTH INTERNATIONAL CONFERENCE ON MEASURING TECHNOLOGY AND MECHATRONICS AUTOMATION (ICMTMA 2015), 2015, : 626 - 629
  • [36] A Fault Diagnosis Method by Using Extreme Learning Machine
    Wang, Chunxia
    Wen, Chenglin
    Lu, Yang
    PROCEEDINGS OF 2015 INTERNATIONAL CONFERENCE ON ESTIMATION, DETECTION AND INFORMATION FUSION ICEDIF 2015, 2015, : 318 - 322
  • [37] A Machine Learning Approach for Gearbox System Fault Diagnosis
    Vrba, Jan
    Cejnek, Matous
    Steinbach, Jakub
    Krbcova, Zuzana
    ENTROPY, 2021, 23 (09)
  • [38] Machine learning algorithms for fault diagnosis in analog circuits
    Rajan, V
    Ying, J
    Chakrabarty, S
    Pattipati, K
    1998 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5, 1998, : 1874 - 1879
  • [39] Transfer learning for enhanced machine fault diagnosis in manufacturing
    Wang, Peng
    Gao, Robert X.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2020, 69 (01) : 413 - 416
  • [40] Chiller Fault Diagnosis Based on Automatic Machine Learning
    Tian, Chongyi
    Wang, Youyin
    Ma, Xin
    Chen, Zhuolun
    Xue, Huiyu
    FRONTIERS IN ENERGY RESEARCH, 2021, 9