Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs

被引:24
|
作者
Kalule, Ramanzani [1 ]
Abderrahmane, Hamid Ait [1 ]
Alameri, Waleed [2 ]
Sassi, Mohamed [1 ]
机构
[1] Khalifa Univ, Dept Mech Engn, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ, Dept Petr Engn, Abu Dhabi, U Arab Emirates
关键词
DIGITAL ROCK; SIZE;
D O I
10.1038/s41598-023-36096-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study employs a stacked ensemble machine learning approach to predict carbonate rocks' porosity and absolute permeability with various pore-throat distributions and heterogeneity. Our dataset consists of 2D slices from 3D micro-CT images of four carbonate core samples. The stacking ensemble learning approach integrates predictions from several machine learning-based models into a single meta-learner model to accelerate the prediction and improve the model's generalizability. We used the randomized search algorithm to attain optimal hyperparameters for each model by scanning over a vast hyperparameter space. To extract features from the 2D image slices, we applied the watershed-scikit-image technique. We showed that the stacked model algorithm effectively predicts the rock's porosity and absolute permeability.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked Generalization: An Ensemble Approach
    Kshatri, Sapna Singh
    Singh, Deepak
    Narain, Bhavana
    Bhatia, Surbhi
    Quasim, Mohammad Tabrez
    Sinha, G. R.
    IEEE ACCESS, 2021, 9 : 67488 - 67500
  • [22] An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked Generalization: An Ensemble Approach
    Kshatri, Sapna Singh
    Singh, Deepak
    Narain, Bhavana
    Bhatia, Surbhi
    Quasim, Mohammad Tabrez
    Sinha, G.R.
    IEEE Access, 2021, 9 : 67488 - 67500
  • [23] Upscaling the porosity-permeability relationship of a microporous carbonate for Darcy-scale flow with machine learning
    Menke, H. P.
    Maes, J.
    Geiger, S.
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [24] Stacked Ensemble Machine Learning for Range-Separation Parameters
    Ju, Cheng-Wei
    French, Ethan J.
    Geva, Nadav
    Kohn, Alexander W.
    Lin, Zhou
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2021, 12 (39): : 9516 - 9524
  • [25] SPECTROSCOPY DATA CALIBRATION USING STACKED ENSEMBLE MACHINE LEARNING
    Olihin, Ahmud Wan
    Yuan, Chan Jin
    Hong, Wan Siu
    Pui, Liew Phing
    Ang, Chun Kit
    Hossain, Wafa
    Machmudah, Affiani
    IIUM ENGINEERING JOURNAL, 2024, 25 (01): : 208 - 224
  • [26] Bayesian deep networks for absolute permeability and porosity uncertainty prediction from image borehole logs from brazilian carbonate reservoirs
    Bom, Clecio R.
    Valentin, Manuel Blanco
    Fraga, Bernardo M. O.
    Campos, Jorge
    Coutinho, Bernardo
    Dias, Luciana O.
    Faria, Elisangela L.
    de Albuquerque, Marcio P.
    de Albuquerque, Marcelo P.
    Correia, Maury Duarte
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 201 (201)
  • [27] Stacked Ensemble-Based Type-2 Diabetes Prediction Using Machine Learning Techniques
    Rahim M.A.
    Hossain M.A.
    Hossain M.N.
    Shin J.
    Yun K.S.
    Annals of Emerging Technologies in Computing, 2023, 7 (01) : 30 - 39
  • [28] Prediction of concrete porosity using machine learning
    Cao, Chong
    RESULTS IN ENGINEERING, 2023, 17
  • [29] Heart Disease Prediction Using a Stacked Ensemble Learning Approach
    Shrawan Kumar
    Bharti Thakur
    SN Computer Science, 6 (1)
  • [30] A stacked ensemble learning method for customer lifetime value prediction
    Asadi, Nader
    Kazerooni, Mehrdad
    KYBERNETES, 2024, 53 (07) : 2342 - 2360