Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs

被引:24
|
作者
Kalule, Ramanzani [1 ]
Abderrahmane, Hamid Ait [1 ]
Alameri, Waleed [2 ]
Sassi, Mohamed [1 ]
机构
[1] Khalifa Univ, Dept Mech Engn, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ, Dept Petr Engn, Abu Dhabi, U Arab Emirates
关键词
DIGITAL ROCK; SIZE;
D O I
10.1038/s41598-023-36096-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study employs a stacked ensemble machine learning approach to predict carbonate rocks' porosity and absolute permeability with various pore-throat distributions and heterogeneity. Our dataset consists of 2D slices from 3D micro-CT images of four carbonate core samples. The stacking ensemble learning approach integrates predictions from several machine learning-based models into a single meta-learner model to accelerate the prediction and improve the model's generalizability. We used the randomized search algorithm to attain optimal hyperparameters for each model by scanning over a vast hyperparameter space. To extract features from the 2D image slices, we applied the watershed-scikit-image technique. We showed that the stacked model algorithm effectively predicts the rock's porosity and absolute permeability.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Stacked ensemble machine learning for porosity and absolute permeability prediction of carbonate rock plugs
    Ramanzani Kalule
    Hamid Ait Abderrahmane
    Waleed Alameri
    Mohamed Sassi
    Scientific Reports, 13
  • [2] A stacked ensemble machine learning approach for the prediction of diabetes
    Oliullah, Khondokar
    Rasel, Mahedi Hasan
    Islam, Md. Manzurul
    Islam, Md. Reazul
    Wadud, Md. Anwar Hussen
    Whaiduzzaman, Md.
    JOURNAL OF DIABETES AND METABOLIC DISORDERS, 2024, 23 (01) : 603 - 617
  • [3] Prediction of Porosity and Permeability Alteration Based on Machine Learning Algorithms
    Erofeev, Andrei
    Orlov, Denis
    Ryzhov, Alexey
    Koroteev, Dmitry
    TRANSPORT IN POROUS MEDIA, 2019, 128 (02) : 677 - 700
  • [4] Prediction of Porosity and Permeability Alteration Based on Machine Learning Algorithms
    Andrei Erofeev
    Denis Orlov
    Alexey Ryzhov
    Dmitry Koroteev
    Transport in Porous Media, 2019, 128 : 677 - 700
  • [5] Ensemble Learning Based Sustainable Approach to Carbonate Reservoirs Permeability Prediction
    Musleh, Dhiaa A.
    Olatunji, Sunday O.
    Almajed, Abdulmalek A.
    Alghamdi, Ayman S.
    Alamoudi, Bassam K.
    Almousa, Fahad S.
    Aleid, Rayan A.
    Alamoudi, Saeed K.
    Jan, Farmanullah
    Al-Mofeez, Khansa A.
    Rahman, Atta
    SUSTAINABILITY, 2023, 15 (19)
  • [6] Correlation between porosity and permeability of carbonate rock reservoirs
    Chilingar, G.
    Long, W.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2017, 39 (11) : 1116 - 1117
  • [7] A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran
    Erfan Mohammadian
    Mahdi Kheirollahi
    Bo Liu
    Mehdi Ostadhassan
    Maziyar Sabet
    Scientific Reports, 12
  • [8] A case study of petrophysical rock typing and permeability prediction using machine learning in a heterogenous carbonate reservoir in Iran
    Mohammadian, Erfan
    Kheirollahi, Mahdi
    Liu, Bo
    Ostadhassan, Mehdi
    Sabet, Maziyar
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [9] Prediction of mortality in sepsis patients using stacked ensemble machine learning algorithm
    Babu, M.
    Sappani, M.
    Joy, M.
    Chandiraseharan, V. K.
    Jeyaseelan, L.
    Sudarsanam, T. D.
    JOURNAL OF POSTGRADUATE MEDICINE, 2024, 70 (04) : 209 - 216
  • [10] Lessons for machine learning from the analysis of porosity-permeability transforms for carbonate reservoirs
    Male, Frank
    Duncan, Ian J.
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2020, 187 (187)