Approximation of the Tikhonov regularization parameter through Aitken's extrapolation

被引:1
|
作者
Fika, Paraskevi [1 ]
机构
[1] Natl & Kapodistrian Univ Athens, Dept Math, Athens 15784, Greece
关键词
Tikhonov regularization; Aitken's extrapolation; Generalized cross-validation; Quasi-optimality criterion; Gfrerer; Raus method; Morozov's discrepancy principle; GENERALIZED CROSS-VALIDATION; CHOICE; GCV;
D O I
10.1016/j.apnum.2023.04.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present work, we study the determination of the regularization parameter and the computation of the regularized solution in Tikhonov regularization, by the Aitken's extrapolation method. In particular, this convergence acceleration method is adjusted for the approximation of quadratic forms that appear in regularization methods, such as the generalized cross-validation method, the quasi-optimality criterion, the Gfrerer/Raus method and the Morozov's discrepancy principle. We present several numerical examples to illustrate the effectiveness of the derived estimates for approximating the regularization parameter for several linear discrete ill-posed problems and we compare the described method with further existing methods, for the determination of the regularized solution.(c) 2023 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:270 / 282
页数:13
相关论文
共 50 条
  • [31] Simplified Iterative Tikhonov Regularization and Posteriori Parameter Choice Rules
    来慧洁
    贺国强
    Journal of Shanghai University, 2005, (04) : 314 - 319
  • [32] Fixed-point iterations in determining the Tikhonov regularization parameter
    Viloche Bazan, Fermin S.
    INVERSE PROBLEMS, 2008, 24 (03)
  • [33] A modified Tikhonov regularization method for parameter estimations of a drawbead model
    Han, X.
    Wang, G.
    Liu, G. P.
    INVERSE PROBLEMS IN SCIENCE AND ENGINEERING, 2009, 17 (04) : 437 - 449
  • [34] Regularization parameter estimation for large-scale Tikhonov regularization using a priori information
    Renaut, Rosemary A.
    Hnetynkova, Iveta
    Mead, Jodi
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (12) : 3430 - 3445
  • [35] A Kind of a Posteriori Parameter Choices for the Iterated Tikhonov Regularization Method
    贺国强
    Chinese Science Bulletin, 1993, (05) : 356 - 360
  • [36] Automatic parameter selection for Tikhonov regularization in ECT Inverse problem
    Pasadas, Dario J.
    Ribeiro, Artur L.
    Ramos, Helena G.
    Rocha, Tiago J.
    SENSORS AND ACTUATORS A-PHYSICAL, 2016, 246 : 73 - 80
  • [38] Synchronous generator parameter identification based on Tikhonov regularization method
    Huang C.
    Yuan H.
    Ma Z.
    Ling M.
    Dianli Zidonghua Shebei/Electric Power Automation Equipment, 2016, 36 (05): : 107 - 111
  • [39] Automatic balancing parameter selection for Tikhonov-TV regularization
    Ali Gholami
    Silvia Gazzola
    BIT Numerical Mathematics, 2022, 62 : 1873 - 1898
  • [40] A New Method for Determining the Tikhonov Regularization Parameter of Load Identification
    Gao, Wei
    Yu, Kaiping
    NINTH INTERNATIONAL SYMPOSIUM ON PRECISION ENGINEERING MEASUREMENTS AND INSTRUMENTATION, 2015, 9446