Li4Ti5O12-Hard carbon composite anode for fast-charging Li-Ion batteries

被引:6
|
作者
Saneifar, Hamidreza [1 ]
Liu, Jian [1 ]
机构
[1] Univ British Columbia, Fac Appl Sci, Sch Engn, Kelowna, BC V1V 1V7, Canada
基金
加拿大自然科学与工程研究理事会; 加拿大创新基金会;
关键词
Fast-Charging Li-Ion Batteries; Hard Carbon Composite Anode; LiNixMnyCo1-x-yO2; Cathode; specific energy improvement and Interfacial; Stability; HARD CARBON; PERFORMANCE; STORAGE; ADDITIVES;
D O I
10.1016/j.jelechem.2022.117100
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
The fast charge of lithium-ion batteries (LIBs) needs anode and cathode materials operating at high current densities and thus require special consideration for the electrode materials. This work studies the effect of the loading ratio of Hard Carbon (HC) and Li4Ti5O12 (LTO) on the electrochemical behavior of fast-charging LIBs. The formation of LTO/HC composites is confirmed with structural characterizations and electronic con-ductivity measurement. Galvanostatic charge-discharge cycling testing shows that superior cycling stability and specific capacity are achieved for the LTO/HC composite electrode with 20 wt% HC (LTO-HC20). Electrochemical impedance spectroscopy study reveals the improved lithium diffusion coefficient of LTO-HC compared to LTO only. Post-mortem analysis suggests that the LTO-HC composite electrodes, with an opti-mized LTO to HC ratio, can effectively contribute to improved Li-ion storage and electronic conductivity and robust solid electrolyte interphase on the electrode surface. Finally, full cells consisting of the optimized anode (LTO-HC20) and cathode (NMC 333) are fabricated and evaluated. It is found that a full cell of NCM/LTO-HC20 exhibits capacity retention of 82% and 79% over 300 cycles and specific energy of 130 and 89 Wh kg-1 at 1C and 3C, respectively. Therefore, a specific ratio of HC in the LTO-HC composite anode can dramatically improve the battery performance and specific energy while reducing the cost.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Functionalized Polyethylene Separators with Efficient Li-Ion Transport Rate for Fast-Charging Li-Ion Batteries
    Dang, Ning
    Mao, Jiarong
    Mao, Yuqiong
    Yi, Wenjun
    Li, Dan
    Cheng, Tengfei
    He, Liqing
    Deng, Jinni
    Zhao, Zhengping
    Zhao, Tianbao
    Chen, Baoshu
    ACS APPLIED MATERIALS & INTERFACES, 2024, 17 (01) : 2169 - 2179
  • [22] Synthesis and characterization Li4Ti5O12 for Li-ion batteries
    Yilmaz, Mehmet
    Aydin, Serdar
    Turgut, Guven
    Yurtcan, Mustafa Tolga
    Demir, Yasar
    Ertugrul, Mehmet
    ENERGY EDUCATION SCIENCE AND TECHNOLOGY PART A-ENERGY SCIENCE AND RESEARCH, 2011, 28 (01): : 411 - 416
  • [23] High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries
    Chen, Chunhui
    Agrawal, Richa
    Wang, Chunlei
    NANOMATERIALS, 2015, 5 (03): : 1469 - 1480
  • [24] Cooperative enhancement of electrochemical properties in double carbon-decorated Li4Ti5O12/C composite as anode for Li-ion batteries
    Li, Fangfang
    Chen, Penghui
    Wu, Hao
    Zhang, Yun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 633 : 443 - 447
  • [25] Effect of rGO on electrochemical behavior of Li4Ti5O12 as an anode material for Li-ion batteries
    Mokaripoor, Elham
    Kazeminezhad, Iraj
    Daneshtalab, Reza
    MATERIALS TODAY COMMUNICATIONS, 2024, 38
  • [26] Conductive surface modification with copper of Li4Ti5O12 as anode materials for Li-ion batteries
    He, Zhenjiang
    Wang, Zhixing
    Cheng, Lei
    Li, Tao
    Li, Xinhai
    Guo, Huajun
    Wu, Feixiang
    MATERIALS LETTERS, 2013, 107 : 273 - 275
  • [27] Synthesis and electrochemical properties of Li4Ti5O12/CuO anode material for Li-ion batteries
    Zhu, Ji-Ping
    Yang, Guang
    Zhao, Jun-jie
    Wang, Qing-song
    Yang, Hong-wei
    MECHANICS, SOLID STATE AND ENGINEERING MATERIALS, 2011, 279 : 77 - 82
  • [28] Structure and electrochemical properties of Li4Ti5O12 with Li excess as an anode electrode material for Li-ion batteries
    Gu, Yi-Jie
    Guo, Zhen
    Liu, Hong-Quan
    ELECTROCHIMICA ACTA, 2014, 123 : 576 - 581
  • [29] Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries
    Chun-Yang Wu
    Yu-Xiang Wang
    Jian Xie
    Gao-Shao Cao
    Tie-Jie Zhu
    Xin-Bing Zhao
    Journal of Solid State Electrochemistry, 2012, 16 : 3915 - 3921
  • [30] Electrochemical performance of Li4Ti5O12/carbon nanofibers composite prepared by an in situ route for Li-ion batteries
    Wu, Chun-Yang
    Wang, Yu-Xiang
    Xie, Jian
    Cao, Gao-Shao
    Zhu, Tie-Jie
    Zhao, Xin-Bing
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2012, 16 (12) : 3915 - 3921