Natural Language Processing CAM Algorithm Improves Delirium Detection Compared With Conventional Methods

被引:5
|
作者
Pagali, Sandeep R. [1 ,5 ]
Kumar, Rakesh [2 ]
Fu, Sunyang [3 ]
Sohn, Sunghwan [3 ]
Yousufuddin, Mohammed [4 ]
机构
[1] Mayo Clin, Div Hosp Internal Med, Dept Med, Rochester, MN USA
[2] Mayo Clin, Dept Psychiat, Rochester, MN USA
[3] Mayo Clin, Dept Artificial Intelligence & Informat, Rochester, MN USA
[4] Mayo Clin Hlth Syst, Div Hosp Internal Med, Dept Med, Austin, MN USA
[5] Mayo Clin, Div Hosp Med, 200 First St SW, Rochester, MN 55905 USA
关键词
delirium; delirium detection; natural language processing; natural language processing-confusion assessment method; CONFUSION ASSESSMENT METHOD; DIAGNOSING DELIRIUM; RELIABILITY; VALIDATION; AGREEMENT; VALIDITY; ADULTS;
D O I
10.1097/JMQ.0000000000000090
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Delirium is known to be underdiagnosed and underdocumented. Delirium detection in retrospective studies occurs mostly by clinician diagnosis or nursing documentation. This study aims to assess the effectiveness of natural language processing-confusion assessment method (NLP-CAM) algorithm when compared to conventional modalities of delirium detection. A multicenter retrospective study analyzed 4351 COVID-19 hospitalized patient records to identify delirium occurrence utilizing three different delirium detection modalities namely clinician diagnosis, nursing documentation, and the NLP-CAM algorithm. Delirium detection by any of the 3 methods is considered positive for delirium occurrence as a comparison. NLP-CAM captured 80% of overall delirium, followed by clinician diagnosis at 55%, and nursing flowsheet documentation at 43%. Increase in age, Charlson comorbidity score, and length of hospitalization had increased delirium detection odds regardless of the detection method. Artificial intelligence-based NLP-CAM algorithm, compared to conventional methods, improved delirium detection from electronic health records and holds promise in delirium diagnostics.
引用
收藏
页码:17 / 22
页数:6
相关论文
共 50 条
  • [41] Natural language processing for automated detection of incidental durotomy
    Karhade, Aditya, V
    Bongers, Michiel E. R.
    Groot, Olivier Q.
    Kazarian, Erick R.
    Cha, Thomas D.
    Fogel, Harold A.
    Hershman, Stuart H.
    Tobert, Daniel G.
    Schoenfeld, Andrew J.
    Bono, Christopher M.
    Kang, James D.
    Harris, Mitchel B.
    Schwab, Joseph H.
    SPINE JOURNAL, 2020, 20 (05): : 695 - 700
  • [42] A Survey on Natural Language Processing for Fake News Detection
    Oshikawa, Ray
    Qian, Jing
    Wang, William Yang
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 6086 - 6093
  • [43] Novelty Detection: A Perspective from Natural Language Processing
    Ghosal, Tirthankar
    Saikh, Tanik
    Biswas, Tameesh
    Ekbal, Asif
    Bhattacharyya, Pushpak
    COMPUTATIONAL LINGUISTICS, 2022, 48 (01) : 77 - 117
  • [44] Natural language processing (NLP) for personality disorder detection
    Jang, Jihee
    Yoon, Seowon
    Son, Gaeun
    Park, Soohyun
    Hwang, Jueun
    Choeh, Joon Yeon
    Choi, Kee-hong
    INTERNATIONAL JOURNAL OF PSYCHOLOGY, 2024, 59 : 79 - 80
  • [45] Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records
    Fu, Sunyang
    Lopes, Guilherme S.
    Pagali, Sandeep R.
    Thorsteinsdottir, Bjoerg
    LeBrasseur, Nathan K.
    Wen, Andrew
    Liu, Hongfang
    Rocca, Walter A.
    Olson, Janet E.
    St Sauver, Jennifer
    Sohn, Sunghwan
    JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2022, 77 (03): : 524 - 530
  • [46] Natural language processing improves estimates of the epidemiology of cannabinoid hyperemesis syndrome
    Hewitt, Marlee
    Ma, Philip
    Coyle, Emily
    Leidlein, Sabryn
    Jennings, Katherine
    Wanis, Nicole
    Miller, Joseph
    AMERICAN JOURNAL OF EMERGENCY MEDICINE, 2023, 70 : 198 - 199
  • [47] Derivation of a natural language processing algorithm to identify febrile infants
    Yaeger, Jeffrey P.
    Lu, Jiahao
    Jones, Jeremiah
    Ertefaie, Ashkan
    Fiscella, Kevin
    Gildea, Daniel
    JOURNAL OF HOSPITAL MEDICINE, 2022, 17 (01) : 11 - 18
  • [48] BorderFlow: A Local Graph Clustering Algorithm for Natural Language Processing
    Ngomo, Axel-Cyrille Ngonga
    Schumacher, Frank
    COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2009, 5449 : 547 - 558
  • [49] Agile Release Planning Using Natural Language Processing Algorithm
    Sharma, Sarika
    Kumar, Deepak
    PROCEEDINGS 2019 AMITY INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AICAI), 2019, : 934 - 938
  • [50] Development of a natural language processing algorithm for the detection of spinal metastasis based on magnetic resonance imaging reports
    Mostafa, Evan
    Hui, Aaron
    Aasman, Boudewijn
    Chowdary, Kamlesh
    Mani, Kyle
    Mardakhaev, Edward
    Zampolin, Richard
    Blumfield, Einat
    Berman, Jesse
    Ramos, Rafael De La Garza
    Fourman, Mitchell
    Yassari, Reza
    Eleswarapu, Ananth
    Mirhaji, Parsa
    NORTH AMERICAN SPINE SOCIETY JOURNAL, 2024, 19