Supervised actor-critic reinforcement learning with action feedback for algorithmic trading

被引:5
|
作者
Sun, Qizhou [1 ]
Si, Yain-Whar [1 ]
机构
[1] Univ Macau, Dept Comp & Informat Sci, Ave da Univ, Taipa, Macau, Peoples R China
关键词
Finance; Reinforcement learning; Supervised learning; Algorithmic trading; ENERGY;
D O I
10.1007/s10489-022-04322-5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement learning is one of the promising approaches for algorithmic trading in financial markets. However, in certain situations, buy or sell orders issued by an algorithmic trading program may not be fulfilled entirely. By considering the actual scenarios from the financial markets, in this paper, we propose a novel framework named Supervised Actor-Critic Reinforcement Learning with Action Feedback (SACRL-AF) for solving this problem. The action feedback mechanism of SACRL-AF notifies the actor about the dealt positions and corrects the transitions of the replay buffer. Meanwhile, the dealt positions are used as the labels for the supervised learning. Recent studies have shown that Deep Deterministic Policy Gradient (DDPG) and Twin Delayed Deep Deterministic Policy Gradient (TD3) are more stable and superior to other actor-critic algorithms. Against this background, based on the proposed SACRL-AF framework, two reinforcement learning algorithms henceforth referred to as Supervised Deep Deterministic Policy Gradient with Action Feedback (SDDPG-AF) and Supervised Twin Delayed Deep Deterministic Policy Gradient with Action Feedback (STD3-AF) are proposed in this paper. Experimental results show that SDDPG-AF and STD3-AF achieve the state-of-art performance in profitability.
引用
收藏
页码:16875 / 16892
页数:18
相关论文
共 50 条
  • [21] Actor-critic reinforcement learning for bidding in bilateral negotiation
    Arslan, Furkan
    Aydogan, Reyhan
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2022, 30 (05) : 1695 - 1714
  • [22] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli Zhang
    Dewei Li
    Yugeng Xi
    Shuai Jia
    Science China Information Sciences, 2020, 63
  • [23] A Sandpile Model for Reliable Actor-Critic Reinforcement Learning
    Peng, Yiming
    Chen, Gang
    Zhang, Mengjie
    Pang, Shaoning
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 4014 - 4021
  • [24] Reinforcement learning with actor-critic for knowledge graph reasoning
    Linli ZHANG
    Dewei LI
    Yugeng XI
    Shuai JIA
    Science China(Information Sciences), 2020, 63 (06) : 223 - 225
  • [25] Actor-Critic Reinforcement Learning for Control With Stability Guarantee
    Han, Minghao
    Zhang, Lixian
    Wang, Jun
    Pan, Wei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (04) : 6217 - 6224
  • [26] Uncertainty Weighted Actor-Critic for Offline Reinforcement Learning
    Wu, Yue
    Zhai, Shuangfei
    Srivastava, Nitish
    Susskind, Joshua
    Zhang, Jian
    Salakhutdinov, Ruslan
    Goh, Hanlin
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [27] Deep Actor-Critic Reinforcement Learning for Anomaly Detection
    Zhong, Chen
    Gursoy, M. Cenk
    Velipasalar, Senem
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [28] MARS: Malleable Actor-Critic Reinforcement Learning Scheduler
    Baheri, Betis
    Tronge, Jacob
    Fang, Bo
    Li, Ang
    Chaudhary, Vipin
    Guan, Qiang
    2022 IEEE INTERNATIONAL PERFORMANCE, COMPUTING, AND COMMUNICATIONS CONFERENCE, IPCCC, 2022,
  • [29] Averaged Soft Actor-Critic for Deep Reinforcement Learning
    Ding, Feng
    Ma, Guanfeng
    Chen, Zhikui
    Gao, Jing
    Li, Peng
    COMPLEXITY, 2021, 2021
  • [30] Benchmarking Actor-Critic Deep Reinforcement Learning Algorithms for Robotics Control With Action Constraints
    Kasaura, Kazumi
    Miura, Shuwa
    Kozuno, Tadashi
    Yonetani, Ryo
    Hoshino, Kenta
    Hosoe, Yohei
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (08) : 4449 - 4456