Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks and Operators in Scientific Computing: Fluid and Solid Mechanics

被引:34
|
作者
Faroughi, Salah A. [1 ]
Pawar, Nikhil M. [1 ]
Fernandes, Celio [1 ,2 ]
Raissi, Maziar [3 ]
Das, Subasish [4 ]
Kalantari, Nima K. [5 ]
Kourosh Mahjour, Seyed [1 ]
机构
[1] Texas State Univ, Ingram Sch Engn, Geointelligence Lab, San Marcos, TX 78666 USA
[2] Univ Minho, Ctr Math CMAT, Campus Gualtar, P-4710057 Braga, Portugal
[3] Univ Colorado Boulder, Dept Appl Math, Boulder, CO 61010 USA
[4] Texas State Univ, Ingram Sch Engn, Artificial Intelligence Transportat Lab, San Marcos, TX 78666 USA
[5] Texas A&M Univ, Comp Sci & Engn Dept, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
physics-guided neural networks; physics-informed neural networks; physics-encoded neural networks; solid mechanics; fluid mechanics; machine learning; deep learning; scientific computing; artificial intelligence; data-driven engineering; machine learning for engineering applications; multiphysics modeling and simulation; physics-based simulations; FATIGUE LIFE PREDICTION; DEEP LEARNING FRAMEWORK; TOPOLOGY OPTIMIZATION; INVERSE PROBLEMS; UNIVERSAL APPROXIMATION; DAMAGE IDENTIFICATION; NONLINEAR OPERATORS; POROUS-MEDIA; MACHINE; FLOW;
D O I
10.1115/1.4064449
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Advancements in computing power have recently made it possible to utilize machine learning and deep learning to push scientific computing forward in a range of disciplines, such as fluid mechanics, solid mechanics, materials science, etc. The incorporation of neural networks is particularly crucial in this hybridization process. Due to their intrinsic architecture, conventional neural networks cannot be successfully trained and scoped when data are sparse, which is the case in many scientific and engineering domains. Nonetheless, neural networks provide a solid foundation to respect physics-driven or knowledge-based constraints during training. Generally speaking, there are three distinct neural network frameworks to enforce the underlying physics: (i) physics-guided neural networks (PgNNs), (ii) physics-informed neural networks (PiNNs), and (iii) physics-encoded neural networks (PeNNs). These methods provide distinct advantages for accelerating the numerical modeling of complex multiscale multiphysics phenomena. In addition, the recent developments in neural operators (NOs) add another dimension to these new simulation paradigms, especially when the real-time prediction of complex multiphysics systems is required. All these models also come with their own unique drawbacks and limitations that call for further fundamental research. This study aims to present a review of the four neural network frameworks (i.e., PgNNs, PiNNs, PeNNs, and NOs) used in scientific computing research. The state-of-the-art architectures and their applications are reviewed, limitations are discussed, and future research opportunities are presented in terms of improving algorithms, considering causalities, expanding applications, and coupling scientific and deep learning solvers.
引用
收藏
页数:31
相关论文
共 50 条
  • [11] Physics-informed neural networks for learning fluid flows with symmetry
    Kim, Younghyeon
    Kwak, Hyungyeol
    Nam, Jaewook
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2119 - 2127
  • [12] Physics-informed neural networks for learning fluid flows with symmetry
    Younghyeon Kim
    Hyungyeol Kwak
    Jaewook Nam
    Korean Journal of Chemical Engineering, 2023, 40 : 2119 - 2127
  • [13] Physics-Informed Guided Disentanglement in Generative Networks
    Pizzati, Fabio
    Cerri, Pietro
    de Charette, Raoul
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 10300 - 10316
  • [14] Numerical analysis of physics-informed neural networks and related models in physics-informed machine learning
    De Ryck, Tim
    Mishra, Siddhartha
    ACTA NUMERICA, 2024, 33 : 633 - 713
  • [15] A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling
    Viana, Felipe A. C.
    Subramaniyan, Arun K.
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2021, 28 (05) : 3801 - 3830
  • [16] Physics-informed neural networks for scientific modeling: uses, implementations, and directions
    New, Alexander
    Gearhart, Andrew S.
    Darragh, Ryan A.
    Villafane-Delgado, Marisel
    ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR MULTI-DOMAIN OPERATIONS APPLICATIONS VI, 2024, 13051
  • [17] SOBOLEV TRAINING FOR PHYSICS-INFORMED NEURAL NETWORKS
    Son, Hwijae
    Jang, Jin woo
    Han, Woo jin
    Hwang, Hyung ju
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2023, 21 (06) : 1679 - 1705
  • [18] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [19] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [20] A Survey of Bayesian Calibration and Physics-informed Neural Networks in Scientific Modeling
    Felipe A. C. Viana
    Arun K. Subramaniyan
    Archives of Computational Methods in Engineering, 2021, 28 : 3801 - 3830