On the hazards of relating representations and inductive biases

被引:0
|
作者
Quilty-Dunn, Jake [1 ]
Porot, Nicolas [2 ]
Mandelbaum, Eric [3 ,4 ,5 ]
机构
[1] Washington Univ, Dept Philosophy, Philosophy Neurosci Psychol Program, St Louis, MO 63130 USA
[2] Mohammed VI Polytech Univ, Africa Inst Res Econ & Social Sci, Rabat, Morocco
[3] CUNY, Grad Ctr, Dept Philosophy, New York, NY USA
[4] CUNY, Grad Ctr, Dept Psychol, New York, NY USA
[5] CUNY, Baruch Coll, New York, NY USA
关键词
MODELS;
D O I
10.1017/S0140525X23002042
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
The success of models of human behavior based on Bayesian inference over logical formulas or programs is taken as evidence that people employ a "language-of-thought" that has similarly discrete and compositional structure. We argue that this conclusion problematically crosses levels of analysis, identifying representations at the algorithmic level based on inductive biases at the computational level.
引用
收藏
页数:75
相关论文
共 50 条
  • [41] Demystifying Inductive Biases for (Beta-)VAE Based Architectures
    Zietlow, Dominik
    Rolinek, Michal
    Martius, Georg
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [42] Inductive Biases for Low Data VQA: A Data Augmentation Approach
    Askarian, Narjes
    Abbasnejad, Ehsan
    Zukerman, Ingrid
    Buntine, Wray
    Haffari, Gholamreza
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 231 - 240
  • [43] ConViT: Improving Vision Transformers with Soft Convolutional Inductive Biases
    d'Ascoli, Stephane
    Touvron, Hugo
    Leavitt, Matthew L.
    Morcos, Ari S.
    Biroli, Giulio
    Sagun, Levent
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [44] Theoretical and empirical evidence for the impact of inductive biases on cultural evolution
    Griffiths, Thomas L.
    Kalish, Michael L.
    Lewandowsky, Stephan
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1509) : 3503 - 3514
  • [45] Toward Out-of-Distribution Generalization Through Inductive Biases
    Moruzzi, Caterina
    PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2021, 2022, 63 : 57 - 66
  • [46] A Closer Look at Learned Optimization: Stability, Robustness, and Inductive Biases
    Harrison, James
    Metz, Luke
    Sohl-Dickstein, Jascha
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [47] Measuring Inductive Biases of In-Context Learning with Underspecified Demonstrations
    Si, Chenglei
    Friedman, Dan
    Joshi, Nitish
    Feng, Shi
    Chen, Danqi
    He, He
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11289 - 11310
  • [48] ConViT: improving vision transformers with soft convolutional inductive biases
    d'Ascoli, Stephane
    Touvron, Hugo
    Leavitt, Matthew L.
    Morcos, Ari S.
    Biroli, Giulio
    Sagun, Levent
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2022, 2022 (11):
  • [49] Inductive biases for deep learning of higher-level cognition
    Goyal, Anirudh
    Bengio, Yoshua
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2266):
  • [50] Learning an Interpretable Model for Driver Behavior Prediction with Inductive Biases
    Arbabi, Salar
    Tavernini, Davide
    Fallah, Saber
    Bowden, Richard
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 3940 - 3947