Enhanced energy storage properties of all-polymer dielectrics by cross-linking

被引:5
|
作者
Liu, Leipeng [1 ,2 ]
Yun, Haochen [2 ]
Xiong, Jie [1 ]
Wang, Jiangtao [2 ]
Zhang, Zhicheng [1 ]
机构
[1] Xi An Jiao Tong Univ, Sch Sci, Dept Appl Chem, Xian 710049, Peoples R China
[2] Shaanxi Univ Sci & Technol, Coll Bioresources Chem & Mat Engn, Xian 710021, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
High discharge energy density; High discharge efficiency; Dielectric constant; Breakdown strength; PMMA; DENSITY; DIPOLAR; CONSTANT; PERFORMANCE; BLENDS; FILMS;
D O I
10.1016/j.reactfunctpolym.2023.105699
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Polymer dielectrics with good energy storage properties are need for advanced electric devices. Herein, a new class of all organic dielectric cross-linkable polymers, poly(methyl methacrylate-glycidyl methacrylate) (P(MMAGMA)) prepared by radical polymerization, is reported. A comprehensive investigation was conducted to examine the impact of the cross-linked monomer GMA content on the energy storage properties. The crosslinking significantly enhances the breakdown strength and suppresses the leakage currents. Consequently, the copolymer P(MMA-GMA) containing 7 mol% GMA exhibits a high discharge energy density of 16.5 J/cm3 at 750 MV/m, coupled with a high discharge efficiency of 82%. Even at an elevated temperature of 100 degrees C, it still possesses a good energy performance of a discharge energy density of 12.1 J/cm3 and a relatively high efficiency of 80.1% at 650 MV/m. This study offers a simple and effective approach to fabricating all-organic polymer dielectrics with good energy storage properties.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Effect of sodium chloride on rheological properties and cross-linking in melts of polymer blends
    I. A. Tsebrenko
    V. A. Pakharenko
    Fibre Chemistry, 1999, 31 : 360 - 364
  • [42] Scalable all-organic polymer dielectrics for high-temperature film capacitors with construction of deep-trap level and cross-linking network
    Wang, Qitong
    Wang, Tianze
    Chi, Hui
    Zhao, Danying
    Yu, Lixuan
    Jiang, Zhenhua
    Zhang, Yunhe
    CHEMICAL ENGINEERING JOURNAL, 2025, 506
  • [43] Effect of cross-linking agents on the rheological properties of polymer-modified bitumen
    Mandal, Tirupan
    Sylla, Ryan
    Bahia, Hussain U.
    Barmand, Shayan
    ROAD MATERIALS AND PAVEMENT DESIGN, 2015, 16 : 349 - 361
  • [44] Effects of fluctuations of cross-linking points on viscoelastic properties of associating polymer networks
    Indei, Tsutomu
    Schieber, Jay D.
    Takimoto, Jun-ichi
    RHEOLOGICA ACTA, 2012, 51 (11-12) : 1021 - 1039
  • [45] Cross-linking effect on thermal, conducting and electrochemical properties of an elastomeric polymer electrolyte
    Cruz, AT
    Silva, GG
    De Souza, PP
    Matencio, T
    Pernaut, JM
    De Paoli, MA
    SOLID STATE IONICS, 2003, 159 (3-4) : 301 - 311
  • [46] Tuning the Mechanical Properties of Nanoporous Hydrogel Particles via Polymer Cross-Linking
    Best, James P.
    Cui, Jiwei
    Muellner, Markus
    Caruso, Frank
    LANGMUIR, 2013, 29 (31) : 9824 - 9831
  • [47] Effects of fluctuations of cross-linking points on viscoelastic properties of associating polymer networks
    Tsutomu Indei
    Jay D. Schieber
    Jun-ichi Takimoto
    Rheologica Acta, 2012, 51 : 1021 - 1039
  • [48] Influence of Cross-linking Behavior on Structure and Breakdown Property of Nanocomposite Dielectrics
    Li Guo
    Li Xiufeng
    Shen Jin
    Wang Xiaoqiang
    Yang Peijie
    Chen Youfu
    2018 12TH INTERNATIONAL CONFERENCE ON THE PROPERTIES AND APPLICATIONS OF DIELECTRIC MATERIALS (ICPADM 2018), 2018, : 925 - 928
  • [49] Polymer nanocomposite dielectrics for electrical energy storage
    Yang Shen
    Xin Zhang
    Ming Li
    Yuanhua Lin
    Ce-Wen Nan
    National Science Review, 2017, 4 (01) : 23 - 25
  • [50] Polymer nanocomposite dielectrics for capacitive energy storage
    Yang, Minzheng
    Guo, Mengfan
    Xu, Erxiang
    Ren, Weibin
    Wang, Danyang
    Li, Sean
    Zhang, Shujun
    Nan, Ce-Wen
    Shen, Yang
    NATURE NANOTECHNOLOGY, 2024, 19 (05) : 588 - 603