Experience-Dependent Axonal Plasticity in Large-Scale Spiking Neural Network Simulations

被引:2
|
作者
Niedermeier, Lars [1 ]
Krichmar, Jeffrey L. [2 ]
机构
[1] Niedermeier Consulting, Zurich, Switzerland
[2] Univ Calif Irvine, Dept Comp Sci, Dept Cognit Sci, Irvine, CA 92697 USA
关键词
Axonal Plasticity; Backpropagation Through Time (BPTT); Cognitive map; E-Prop; Hippocampus; Myelin Sheath; Navigation; Path Planning; Preplay; Simulation; Spiking Neural Network (SNN); Synchronization; Vicarious Trial and Error (VTE); MODEL;
D O I
10.1109/IJCNN54540.2023.10191241
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Axonal plasticity describes the biological phenomenon in which the myelin sheath thickness and the amplification of a signal change due to experience. Recent studies show this to be important for sequence learning and synchronization of temporal information. In spiking neural networks (SNNs), the time a spike travels from the presynaptic neuron along the axon until it reaches a postsynaptic neuron is an essential principle of how SNNs encode information. In simulators for large scale SNN models such as CARLsim, this time is modeled as synaptic delays with discrete values from one to several milliseconds. To simulate neural activity in large-scale SNNs efficiently, delays are transformed as indices to optimized structures that are built once before the simulation starts. As a consequence, and in contrast to synaptic weights, delays are not directly accessible as scalar data in the runtime memory. In the present paper, we introduce axonal delay learning rules in the SNN simulator CARLsim that can be updated during runtime. To demonstrate this feature, we implement the recent E-Prop learning rule in a recurrent SNN capable of flexible navigation. Compared to other studies for axonal plasticity that are based on LIF neurons, we also develop the SNN based on the more biologically realistic Izhikevich neural model. The present work serves as reference implementation for neuromorphic hardware that encode delays and serves as an interesting alternative to synaptic plasticity.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Network dynamics associated with experience-dependent plasticity in the rat somatosensory cortex
    Seif Eldawlatly
    Karim Oweiss
    BMC Neuroscience, 12 (Suppl 1)
  • [22] Principles of experience-dependent neural plasticity: Implications for rehabilitation after brain damage
    Kleim, Jeffrey A.
    Jones, Theresa A.
    JOURNAL OF SPEECH LANGUAGE AND HEARING RESEARCH, 2008, 51 (01): : S225 - S239
  • [23] Learning from large-scale neural simulations
    Serban, Maria
    VITAL MODELS: THE MAKING AND USE OF MODELS IN THE BRAIN SCIENCES, 2017, 233 : 129 - 148
  • [24] Analyzing large-scale spiking neural data wth HRLAnalysis™
    Thibeault, Corey M.
    O'Brien, Michael J.
    Srinivasa, Narayan
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [25] An FPGA design framework for large-scale spiking neural networks
    Wang, Runchun
    Hamilton, Tara Julia
    Tapson, Jonathan
    van Schaik, Andre
    2014 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2014, : 457 - 460
  • [26] Dynamics of pruning in simulated large-scale spiking neural networks
    Iglesias, J
    Eriksson, J
    Grize, F
    Tomassini, M
    Villa, AEP
    BIOSYSTEMS, 2005, 79 (1-3) : 11 - 20
  • [27] Challenges for large-scale implementations of spiking neural networks on FPGAs
    Maguire, L. P.
    McGinnity, T. M.
    Glackin, B.
    Ghani, A.
    Belatreche, A.
    Harkin, J.
    NEUROCOMPUTING, 2007, 71 (1-3) : 13 - 29
  • [28] Neural network potentials for large-scale molecular dynamics simulations of condensed systems
    Behler, Joerg
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2014, 248
  • [29] ROLE OF POLYAMINES IN EXPERIENCE-DEPENDENT BRAIN PLASTICITY
    FERCHMIN, PA
    ETEROVIC, VA
    PHARMACOLOGY BIOCHEMISTRY AND BEHAVIOR, 1987, 26 (02) : 341 - 349
  • [30] EXPERIENCE-DEPENDENT PLASTICITY OF VISUAL CORTICAL MICROCIRCUITS
    Medini, P.
    NEUROSCIENCE, 2014, 278 : 367 - 384