Identification and Mitigation of Shortcomings in Direct and Indirect Liquid Cooling-Based Battery Thermal Management System

被引:19
|
作者
Anisha [1 ]
Kumar, Anil [1 ,2 ]
机构
[1] Delhi Technol Univ, Dept Mech Engn, Delhi 110042, India
[2] Delhi Technol Univ, Ctr Energy & Environm, Delhi 110042, India
关键词
liquid cooling; immersive cooling; cold plate; discrete tube; battery thermal management system; LITHIUM-ION BATTERY; PHASE-CHANGE MATERIALS; HEAT-TRANSFER; COLD PLATE; PERFORMANCE; PACK; WATER; DESIGN; CELL; ENHANCEMENT;
D O I
10.3390/en16093857
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Electric vehicles (EVs) have become a viable solution to the emerging global climate crisis. Rechargeable battery packs are the basic unit of the energy storage system of these vehicles. The battery thermal management system (BTMS) is the primary control unit of the energy source of the vehicles. EV performance is governed by specific power, charging/discharging rate, specific energy, and cycle life of the battery packs. Nevertheless, these parameters are affected by temperature, making thermal management the most significant factor for the performance of a battery pack in an EV. Although the BTMS has acquired plenty of attention, research on the efficiency of the liquid cooling-based BTMS for actual drive cycles has been minimal. Liquid cooling, with appropriate configuration, can provide up to 3500 times more efficient cooling than air cooling. Direct/immersive and indirect liquid cooling are the main types of liquid cooling systems. Immersive/direct cooling utilizes the technique of direct contact between coolant and battery surface, which could provide larger heat transfer across the pack; however, parameters such as leakage, configuration, efficiency, etc., are needed to be considered. Indirect cooling techniques include cold plates, liquid jackets, discrete tubes, etc. It could result in complex configuration or thermal non-uniformity inside the pack. The paper intends to contribute to the alleviation of these gaps by studying various techniques, including different configurations, coolant flow, nanoparticles, varying discharging rates, different coolants, etc. This paper provides a comprehensive perspective of various techniques employed in liquid cooling battery packs, identifying the shortcomings in direct/immersive and indirect liquid cooling systems and discussing their mitigation strategies.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Optimization for Liquid Cooling Cylindrical Battery Thermal Management System Based on Gaussian Process Model
    Li, Wei
    Garg, Akhil
    Xiao, Mi
    Gao, Liang
    JOURNAL OF THERMAL SCIENCE AND ENGINEERING APPLICATIONS, 2021, 13 (02)
  • [22] Parametric investigation on the performance of a direct evaporation cooling battery thermal management system
    Wang, Zhengkun
    Wang, Yanan
    Xie, Zongfa
    Li, Hua
    Peng, Weili
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 189
  • [23] Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling
    Ding, Yuzhang
    Wei, Minxiang
    Liu, Rui
    APPLIED THERMAL ENGINEERING, 2021, 186
  • [24] Simulation analysis of battery thermal management system for electric vehicles based on direct cooling cycle optimization
    Wang, Ceyi
    Chen, Zhengxian
    Shen, Yang
    Li, Jun
    APPLIED THERMAL ENGINEERING, 2025, 268
  • [25] Experimental investigation on mini-channel cooling-based thermal management for Li-ion battery module under different cooling schemes
    Du, Xueping
    Qian, Zhen
    Chen, Zhilin
    Rao, Zhonghao
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2018, 42 (08) : 2781 - 2788
  • [26] A numerical study on a hybrid battery thermal management system based on PCM and wavy microchannel liquid cooling
    Wang, Yuan
    Wang, Yutao
    He, Tianbiao
    Mao, Ning
    RENEWABLE ENERGY, 2024, 235
  • [27] Analysis and optimization of thermal management system for cylindrical power battery based on distributed liquid cooling plates
    Zhao, Yang
    Zhang, Tao
    Wang, Chun
    Tang, YinBo
    Xi, Huan
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2024, 67 (12) : 3695 - 3706
  • [28] Analysis and optimization of thermal management system for cylindrical power battery based on distributed liquid cooling plates
    ZHAO Yang
    ZHANG Tao
    WANG Chun
    TANG YinBo
    XI Huan
    Science China(Technological Sciences), 2024, 67 (12) : 3695 - 3706
  • [29] Battery Thermal Management System on Trapezoidal Battery Pack With Liquid Cooling System Utilizing Phase Change Material
    Vali, P. S. N. Masthan
    Murali, G.
    ASME JOURNAL OF HEAT AND MASS TRANSFER, 2024, 146 (01):
  • [30] CFD Simulation and Modelling of a Battery Thermal Management System: Comparison between Indirect and Immersion Cooling
    Carello M.
    Bovio M.
    Ricci F.
    Dall'acqua S.
    Strano D.I.
    Rizzello A.
    SAE International Journal of Advances and Current Practices in Mobility, 2023, 6 (01):