Black phosphorus thermosensitive hydrogels loaded with bone marrow mesenchymal stem cell-derived exosomes synergistically promote bone tissue defect repair

被引:21
|
作者
Xu, Tong [1 ]
Hua, Yongmei [1 ]
Mei, Peng [2 ]
Zeng, Deliang [3 ]
Jiang, Shengjie [4 ]
Liao, Chongshan [1 ]
机构
[1] Tongji Univ, Sch & Hosp Stomatol, Shanghai Engn Res Ctr Tooth Restorat & Regenerat, Dept Orthodont, Shanghai 200072, Peoples R China
[2] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Shanghai Res Inst Stomatol,Dept Orthodont,Coll Sto, Shanghai 200011, Peoples R China
[3] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Shanghai Res Inst Stomatol,Dept Prosthodont,Coll S, Shanghai 200011, Peoples R China
[4] Shanghai Jiao Tong Univ, Shanghai Peoples Hosp 9, Sch Med, Shanghai Res Inst Stomatol,Coll Stomatol,Natl Ctr, Shanghai 200011, Peoples R China
基金
中国国家自然科学基金;
关键词
DIFFERENTIATION; ADHESION;
D O I
10.1039/d3tb00341h
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The osteogenic function of mesenchymal stem cells (MSCs) is mainly attributed to the paracrine effect of extracellular vesicles. MSC-derived exosomes are interesting candidates as biopharmaceuticals for drug delivery and for the engineering of biologically functionalized materials, and have emerged as cell-free regenerative medicine in recent years. In this study, bone marrow mesenchymal stem cell (BMSC)-derived exosomes were loaded with photothermal material layered black phosphorus (BP) modified poly(N-isopropylacrylamide) (PNIPAAm) thermosensitive hydrogels to explore their effects on bone defect repair. In vitro, it was confirmed that the local high heat of nano-BP irradiated using a near-infrared (NIR) laser could trigger the reversible cascade reaction of hydrogels, and that the mechanical contraction of hydrogels led to the controllable release of a large number of exosomes along with the release of water molecules. Furthermore, in vitro investigations demonstrated that BP hydrogels loaded with BMSC-derived exosomes had favourable biocompatibility and could promote the proliferation and osteogenic differentiation of MSCs. Experiments conducted in vivo confirmed that this system significantly promoted bone regeneration. Therefore, the results of our study indicated that the nanoplatform based on BP thermosensitive hydrogels could provide a new clinical treatment strategy for controlled release and on-demand drug delivery, while the cell-free system composed of BMSC-derived exosomes had great application potential in bone tissue repair with the synergism of BP.
引用
收藏
页码:4396 / 4407
页数:13
相关论文
共 50 条
  • [31] Bone Marrow Mesenchymal Stromal/Stem Cell-Derived Extracellular Vesicles Promote Corneal Wound Repair by Regulating Inflammation and Angiogenesis
    Saccu, Gabriele
    Menchise, Valeria
    Gai, Chiara
    Bertolin, Marina
    Ferrari, Stefano
    Giordano, Cristina
    Manco, Marta
    Dastru, Walter
    Tolosano, Emanuela
    Bussolati, Benedetta
    Calautti, Enzo
    Camussi, Giovanni
    Altruda, Fiorella
    Fagoonee, Sharmila
    CELLS, 2022, 11 (23)
  • [32] Mesenchymal stem cell-derived extracellular vesicles in periodontal bone repair
    Chen, Mengbing
    Huang, Bo
    Su, Xiaoxia
    JOURNAL OF MOLECULAR MEDICINE-JMM, 2025, 103 (02): : 137 - 156
  • [33] CELL-FREE THERAPY BY DACTINOMYCIN LOADED INTO THE BONE MARROW MESENCHYMAL STEM CELLS-DERIVED EXOSOMES
    Hashemi, Zahra Sadat
    Barough, Mahdieh Shokrollahi
    Khalili, Saeed
    Ghavamzadeh, Ardeshir
    Forooshani, Ramin Sarrami
    BONE MARROW TRANSPLANTATION, 2023, 58 (SUPP1) : 589 - 590
  • [34] Hypoxic mesenchymal stem cell-derived exosomes promote bone fracture healing by the transfer of miR-126
    Liu, Wei
    Li, Linwei
    Rong, Yuluo
    Qian, Dingfei
    Chen, Jian
    Zhou, Zheng
    Luo, Yongjun
    Jiang, Dongdong
    Cheng, Lin
    Zhao, Shujie
    Kong, Fanqi
    Wang, Jiaxing
    Zhou, Zhimin
    Xu, Tao
    Gong, Fangyi
    Huang, Yifan
    Gu, Changjiang
    Zhao, Xuan
    Bai, Jianling
    Wang, Feng
    Zhao, Wene
    Zhang, Le
    Li, Xiaoyan
    Yin, Guoyong
    Fan, Jin
    Cai, Weihua
    ACTA BIOMATERIALIA, 2020, 103 : 196 - 212
  • [35] Impaired Immunosuppressive Effect of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes on T Cells in Aplastic Anemia
    Wang, Shichong
    Huo, Jiali
    Liu, Yilin
    Chen, Lingyun
    Ren, Xiang
    Li, Xingxin
    Wang, Min
    Jin, Peng
    Huang, Jinbo
    Nie, Neng
    Zhang, Jing
    Shao, Yingqi
    Ge, Meili
    Mi, Yingchang
    Zheng, Yizhou
    BLOOD, 2023, 142
  • [36] MicroRNAs of bone marrow mesenchymal stem cell-derived exosomes regulate acute myeloid leukemia cell proliferation and apoptosis
    Xu, Yi-Chuan
    Lin, Yan-Si
    Zhang, Ling
    Lu, Ying
    Sun, Yan-Ling
    Fang, Zhi-Gang
    Li, Zi-Yu
    Fan, Rui-Fang
    CHINESE MEDICAL JOURNAL, 2020, 133 (23) : 2829 - 2839
  • [37] Impaired immunosuppressive effect of bone marrow mesenchymal stem cell-derived exosomes on T cells in aplastic anemia
    Wang, Shichong
    Huo, Jiali
    Liu, Yilin
    Chen, Lingyun
    Ren, Xiang
    Li, Xingxin
    Wang, Min
    Jin, Peng
    Huang, Jinbo
    Nie, Neng
    Zhang, Jing
    Shao, Yingqi
    Ge, Meili
    Zheng, Yizhou
    STEM CELL RESEARCH & THERAPY, 2023, 14 (01)
  • [38] Bone marrow mesenchymal stem cell-derived exosomes protect podocytes from HBx-induced ferroptosis
    Yang, Xiaoqian
    Yu, Yani
    Li, Baoshuang
    Chen, Yueqi
    Feng, Moxuan
    Hu, Yongzheng
    Jiang, Wei
    PEERJ, 2023, 11
  • [39] Bone Marrow Mesenchymal Stem Cell-Derived Exosomes Alleviate Peritoneal Dialysis-Associated Peritoneal Injury
    Yu, Fang
    Yang, Jie
    Chen, Jia
    Wang, Xiaoyue
    Cai, Qingli
    He, Yani
    Chen, Kehong
    STEM CELLS AND DEVELOPMENT, 2023, 32 (7-8) : 197 - 211
  • [40] Study on Immune Regulation of Bone Marrow Mesenchymal Stem Cell-Derived Exosomes in Preterm Infants with Brain Injury
    Shu, Jiaping
    Mo, Sisi
    Wen, Quan
    Qin, Yan
    Jiang, Li
    NANOSCIENCE AND NANOTECHNOLOGY LETTERS, 2018, 10 (11) : 1598 - 1605