Plasmonic Titanium Nitride/g-C3N4 with Inherent Interface Facilitates Photocatalytic CO2 Reduction

被引:16
|
作者
Nguyen, Duc-Trung [1 ]
Do, Trong-On [1 ]
机构
[1] Laval Univ, Dept Chem Engn, Quebec City, PQ G1V 0A6, Canada
关键词
titanium nitride; localized surface plasmon resonance; inherent interface; CO2; reduction; LIGHT; COPOLYMERIZATION; NANOPARTICLES; NANOSPHERES; WATER;
D O I
10.1021/acsaem.2c02303
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasmonic metal nitride is a practical alternative for plasmonic gold nanoparticles owing to its low-cost, tunable plasmonic resonance in the visible-light and near-IR region. However, an efficient charge transfer between plasmonic metal nitride nanoparticles and graphitic carbon nitride g-C3N4 through the formation of chemical bonds remains challenging. Herein, a facile strategy for the fabrication of plasmonic titanium nitride/g-C3N4 with intimate contact toward an enhanced photocatalytic CO2 reduction is proposed. The functionalization of TiN nanoparticles with amino groups enables the copolymerization with g-C3N4 precursors, offering intimate contact between them by the covalent bonds. This intimate contact could facilitate the electron transfer between TiN nanoparticles and g-C3N4. Under optimized conditions, the representative g-C3N4-2.8TiN has the highest CO production rate of similar to 820 mu mol g-1 h-1 with an apparent quantum yield of 3.5% at 400 nm and even 0.43% at 550 nm, which are some of the highest reported values for g-C3N4-based materials. This work offers promising opportunities to fabricate low-cost plasmonic nanoparticle/semiconductor systems for solar energy applications.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [41] Photochemical CO2 reduction using structurally controlled g-C3N4
    Walsh, James J.
    Jiang, Chaoran
    Tang, Junwang
    Cowan, Alexander J.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (36) : 24825 - 24829
  • [42] Review of different series of MOF/g-C3N4 composites for photocatalytic hydrogen production and CO2 reduction
    Jiang, Jing-Jing
    Zhang, Feng-Jun
    Wang, Ying-Rui
    New Journal of Chemistry, 2022, 47 (04) : 1599 - 1609
  • [43] Self-assembled g-C3N4 nanotubes/graphdiyne composite with enhanced photocatalytic CO2 reduction
    Sun, Cong
    Liu, Yuanyuan
    Wang, Zeyan
    Wang, Peng
    Zheng, Zhaoke
    Cheng, Hefeng
    Qin, Xiaoyan
    Zhang, Xiaoyang
    Dai, Ying
    Huang, Baibiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 868
  • [44] BiOCl/g-C3N4 heterojunction catalyst for efficient photocatalytic reduction of CO2 under visible light
    He Z.
    Chen J.
    Tong L.
    Tang J.
    Chen J.
    Song S.
    Song, Shuang (ss@zjut.edu.cn), 1600, Materials China (67): : 4634 - 4642
  • [45] Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity
    Fu, Junwei
    Zhu, Bicheng
    Jiang, Chuanjia
    Cheng, Bei
    You, Wei
    Yu, Jiaguo
    SMALL, 2017, 13 (15)
  • [46] Study on optical properties of alkali metal doped g-C3N4 and their photocatalytic activity for reduction of CO2
    Zhang, Hao
    Tang, Yunqing
    Liu, Zhixiang
    Zhu, Zhi
    Tang, Xu
    Wang, Yemei
    CHEMICAL PHYSICS LETTERS, 2020, 751
  • [47] Photocatalytic CO2 reduction and pesticide degradation over g-C3N4/Ce2S3 heterojunction
    Ubaidullah, Mohd
    Al-Enizi, Abdullah M.
    Nafady, Ayman
    Shaikh, Shoyebmohammad F.
    Kumar, K. Yogesh
    Prashanth, M. K.
    Parashuram, L.
    Jeon, Byong-Hun
    Raghu, M. S.
    Pandit, Bidhan
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [48] Preparation of a CoS2/g-C3N4 composite catalyst and its application in photocatalytic reduction of CO2
    Sun, Yuqing
    Deng, Yilin
    Hu, Yan
    Zhou, Liang
    Lei, Juying
    Liu, Yongdi
    Zhang, Jinlong
    NEW JOURNAL OF CHEMISTRY, 2025, 49 (13) : 5381 - 5389
  • [49] Efficient Electron Transfer in g-C3N4/TiO2 Heterojunction for Enhanced Photocatalytic CO2 Reduction
    Jiang, Peng
    Yu, Yang
    Wang, Kun
    Liu, Wenrui
    CATALYSTS, 2024, 14 (06)
  • [50] Diazanyl and SnO2 bi-activated g-C3N4 for enhanced photocatalytic CO2 reduction
    Su, Fengyun
    Chen, Yanli
    Wang, Ruiping
    Zhang, Sheng
    Liu, Kecheng
    Zhang, Yezhen
    Zhao, Wei
    Ding, Chenghua
    Xie, Haiquan
    Ye, Liqun
    SUSTAINABLE ENERGY & FUELS, 2021, 5 (04) : 1034 - 1043