Multiscale hierarchical attention fusion network for edge detection

被引:0
|
作者
Meng, Kun [1 ]
Dong, Xianyong [2 ]
Shan, Hongyuan [1 ]
Xia, Shuyin [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] China Three Gorges Construct Engn Corp, 1 Liuhe Rd, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
edge detection; deep learning; multiscale; attention network; non-maximum suppression; NMS; multi-scale feature stratification module; MFM; edge attention module; EAM; IMAGE PATTERN; RECOGNITION; ASSOCIATION; FEATURES; SPACE;
D O I
10.1504/IJAHUC.2023.127763
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Edge detection is one of the basic challenges in the field of computer vision. The results of most recent methods produce thick edges and background interference. The images generated by these networks must be postprocessed with non-maximum suppression (NMS). To tackle the problem, we propose a novel edge detection model that allows the network to concentrate on learning the contextual features of an image, thereby obtaining more accurate pixel edges. To obtain abundant multi-granularity features of image high-level features, we introduce multi-scale feature stratification module (MFM). Then, we increase the constraint between pixels through the edge attention module (EAM), so that the model can obtain stronger feature extraction ability. These new approaches can improve the ability of describing edges of models. Evaluating our method on two popular benchmark datasets, the edge image predicted by this method is superior to existing edge detection methods in subjective perception and objective evaluation indexes.
引用
收藏
页码:1 / 11
页数:12
相关论文
共 50 条
  • [31] MSAFFNet: A Multiscale Label-Supervised Attention Feature Fusion Network for Infrared Small Target Detection
    Tong, Xiaozhong
    Su, Shaojing
    Wu, Peng
    Guo, Runze
    Wei, Junyu
    Zuo, Zhen
    Sun, Bei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [32] MACFNet: Detection of Alzheimer's disease via multiscale attention and cross-enhancement fusion network
    Tang, Chaosheng
    Xi, Mengbo
    Sun, Junding
    Wang, Shuihua
    Zhang, Yudong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 254
  • [33] Visual Image Decoding of Brain Activities Using a Dual Attention Hierarchical Latent Generative Network With Multiscale Feature Fusion
    Luo, Jie
    Cui, Weigang
    Liu, Jingyu
    Li, Yang
    Guo, Yuzhu
    Xu, Song
    Wang, Lina
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2023, 15 (02) : 761 - 773
  • [34] BrainNeuroNet: advancing brain tumor detection with hierarchical transformers and multiscale attention
    S. Poornam
    J. Jane Rubel Angelina
    International Journal of Information Technology, 2024, 16 (8) : 4749 - 4756
  • [35] A Vision Enhancement and Feature Fusion Multiscale Detection Network
    Chengwu Qian
    Jiangbo Qian
    Chong Wang
    Xulun Ye
    Caiming Zhong
    Neural Processing Letters, 56
  • [36] A Vision Enhancement and Feature Fusion Multiscale Detection Network
    Qian, Chengwu
    Qian, Jiangbo
    Wang, Chong
    Ye, Xulun
    Zhong, Caiming
    NEURAL PROCESSING LETTERS, 2024, 56 (01)
  • [37] MAF-DeepLab: A Multiscale Attention Fusion Network for Semantic Segmentation
    Chen, Ning
    Chen, Yupeng
    Wang, Qinfeng
    Wu, Shaopeng
    Zhang, Hongyi
    TRAITEMENT DU SIGNAL, 2022, 39 (02) : 407 - 417
  • [38] Emotion Recognition via Multiscale Feature Fusion Network and Attention Mechanism
    Jiang, Yiye
    Xie, Songyun
    Xie, Xinzhou
    Cui, Yujie
    Tang, Hao
    IEEE SENSORS JOURNAL, 2023, 23 (10) : 10790 - 10800
  • [39] Multiscale Attention Spatiotemporal Fusion Model Based on Pyramidal Network Constraints
    Ran, Qiong
    Wang, Qiuhui
    Zheng, Ke
    Li, Jiaxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [40] Compact twice fusion network for edge detection
    Li, Zongmin
    Li, Yachuan
    Soria, P. Xavier
    Yang, Chaozhi
    Xiao, Qian
    Bai, Yun
    Li, Hua
    Wang, Xiangdong
    MULTIMEDIA SYSTEMS, 2025, 31 (01)