Anti-Dengue: A Machine Learning-Assisted Prediction of Small Molecule Antivirals against Dengue Virus and Implications in Drug Repurposing

被引:4
|
作者
Gautam, Sakshi [1 ,2 ]
Thakur, Anamika [1 ,2 ]
Rajput, Akanksha [1 ]
Kumar, Manoj [1 ,2 ]
机构
[1] Council Sci & Ind Res CSIR, Inst Microbial Technol, Virol Unit, Sect 39A, Chandigarh 160036, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
来源
VIRUSES-BASEL | 2024年 / 16卷 / 01期
关键词
dengue virus; machine learning; predictive models; QSAR; web server; QSAR;
D O I
10.3390/v16010045
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
Dengue outbreaks persist in global tropical regions, lacking approved antivirals, necessitating critical therapeutic development against the virus. In this context, we developed the "Anti-Dengue" algorithm that predicts dengue virus inhibitors using a quantitative structure-activity relationship (QSAR) and MLTs. Using the "DrugRepV" database, we extracted chemicals (small molecules) and repurposed drugs targeting the dengue virus with their corresponding IC50 values. Then, molecular descriptors and fingerprints were computed for these molecules using PaDEL software. Further, these molecules were split into training/testing and independent validation datasets. We developed regression-based predictive models employing 10-fold cross-validation using a variety of machine learning approaches, including SVM, ANN, kNN, and RF. The best predictive model yielded a PCC of 0.71 on the training/testing dataset and 0.81 on the independent validation dataset. The created model's reliability and robustness were assessed using William's plot, scatter plot, decoy set, and chemical clustering analyses. Predictive models were utilized to identify possible drug candidates that could be repurposed. We identified goserelin, gonadorelin, and nafarelin as potential repurposed drugs with high pIC50 values. "Anti-Dengue" may be beneficial in accelerating antiviral drug development against the dengue virus.
引用
收藏
页数:17
相关论文
共 49 条
  • [31] The small molecule AZD6244 inhibits dengue virus replication in vitro and protects against lethal challenge in a mouse model
    Leonardo C. de Oliveira
    Aryádina M. Ribeiro
    Jonas D. Albarnaz
    Alice A. Torres
    Luís F. Z. Guimarães
    Amelia K. Pinto
    Scott Parker
    Konstantin Doronin
    James D. Brien
    Mark R. Buller
    Cláudio A. Bonjardim
    Archives of Virology, 2020, 165 : 671 - 681
  • [32] UNPRECEDENTED PRECLINICAL EFFICACY OF JNJ-1802, A NOVEL PAN-SEROTYPE DENGUE ANTIVIRAL SMALL MOLECULE, AGAINST DENGUE VIRUS IN NON-HUMAN PRIMATE AND MURINE MODELS
    Goethals, Olivia
    Kaptein, Suzanne J. F.
    Kesteleyn, Bart
    Bonfanti, Jean-Francois
    Jonckers, Tim H. M.
    Marchand, Arnaud
    Verschoor, Ernst
    Verstrepen, Babs
    Van Wesenbeeck, Liesbeth
    Ackaert, Oliver
    Straetemans, Roel
    Lachau-Durand, Sophie
    Geluykens, Peggy
    Crabbe, Marjolein
    Thys, Kim
    Bardiot, Dorothee
    Stoops, Bart
    Dallmeier, Kai
    Putnak, Robert J.
    McCracken, Michael K.
    Gromowski, Gregory D.
    Rutvisuttinunt, Wiriya
    Jarman, Richard G.
    Karasavvas, Nicos
    Touret, Franck
    Querat, Gilles
    de lamballerie, Xavier
    Kiemel, Dominik
    Chatel-Chaix, Laurent
    Munster, Max
    Milligan, Gregg
    Beasley, David
    Bourne, Nigel
    Barrett, Alan D. T.
    Raboisson, Pierre
    Simmen, Kenny
    Chaltin, Patrick
    Bartenschlager, Ralf
    Bogers, Willy
    Neyts, Johan
    Van Loock, Marnix
    AMERICAN JOURNAL OF TROPICAL MEDICINE AND HYGIENE, 2021, 105 (05): : 413 - 414
  • [33] Cheminformatics and machine learning approaches for repurposing anti-viral compounds against monkeypox virus thymidylate kinase
    Rabaan, Ali A.
    Alwashmi, Ameen S. S.
    Mashraqi, Mutaib M.
    Alshehri, Ahmad A.
    Alawfi, Abdulsalam
    Alshengeti, Amer
    Najim, Mustafa A.
    AlShehail, Bashayer M.
    AlShahrani, Abdullah J.
    Garout, Mohammed
    MOLECULAR DIVERSITY, 2024, 28 (05) : 2735 - 2748
  • [34] Artificial Intelligence/Machine Learning-Driven Small Molecule Repurposing via Off-Target Prediction and Transcriptomics
    Rao, Mohan
    McDuffie, Eric
    Sachs, Clifford
    TOXICS, 2023, 11 (10)
  • [35] Machine Learning-Assisted Recurrence Prediction for Patients With Early-Stage Non-Small-Cell Lung Cancer
    Janik, Adrianna
    Torrente, Maria
    Costabello, Luca
    Calvo, Virginia
    Walsh, Brian
    Camps, Carlos
    Mohamed, Sameh K.
    Ortega, Ana L.
    Novacek, Vit
    Massuti, Bartomeu
    Minervini, Pasquale
    Garcia Campelo, M. Rosario
    del Barco, Edel
    Bosch-Barrera, Joaquim
    Menasalvas, Ernestina
    Timilsina, Mohan
    Provencio, Mariano
    JCO CLINICAL CANCER INFORMATICS, 2023, 7 : e2200062
  • [36] Machine Learning-Assisted Recurrence Prediction for Patients With Early-Stage Non-Small-Cell Lung Cancer
    Janik, Adrianna
    Torrente, Maria
    Costabello, Luca
    Calvo, Virginia
    Walsh, Brian
    Camps, Carlos
    Mohamed, Sameh K.
    Ortega, Ana L.
    Novacek, Vit
    Massuti, Bartomeu
    Minervini, Pasquale
    Campelo, M. Rosario Garcia
    del Barco, Edel
    Bosch-Barrera, Joaquim
    Menasalvas, Ernestina
    Timilsina, Mohan
    Provencio, Mariano
    JCO CLINICAL CANCER INFORMATICS, 2023, 7
  • [37] Computational approaches for innovative anti-viral drug discovery using Orthosiphon aristatus blume miq against dengue virus
    Zaib, Sumera
    Akram, Fatima
    Waris, Wania
    Liaqat, Syed Talha
    Zaib, Zainab
    Khan, Imtiaz
    Dera, Ayed A.
    Pashameah, Rami Adel
    Alzahrani, Eman
    Farouk, Abd-ElAziem
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (18): : 8738 - 8750
  • [38] Screening of Inhibitors against Idiopathic Pulmonary Fibrosis: Few-shot Machine Learning and Molecule Docking based Drug Repurposing
    Chang, Jun
    Zou, Shaoqing
    Xu, Subo
    Xiao, Yiwen
    Zhu, Du
    CURRENT COMPUTER-AIDED DRUG DESIGN, 2024, 20 (02) : 134 - 144
  • [39] Prediction of the small molecule selectivity index against influenza virus strain A/H1N1 using machine learning methods
    A. D. Egorov
    Ya. V. Gorohov
    M. M. Kuznetsov
    S. S. Borisevich
    Russian Chemical Bulletin, 2025, 74 (3) : 851 - 864
  • [40] Machine learning assisted designing of Y-series small molecule acceptors: Library generation and property prediction
    Ahmad, Farooq
    Mahmood, Asif
    El Azab, Islam H.
    Ahmad, Nafees
    Mahmoud, M. H. H.
    El-Bahy, Zeinhom M.
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2024, 453