Synthetic versus distributional lower Ricci curvature bounds

被引:0
|
作者
Kunzinger, Michael [1 ]
Oberguggenberger, Michael [2 ]
Vickers, James A. [3 ]
机构
[1] Univ Vienna, Fac Math, Vienna, Austria
[2] Univ Innsbruck, Unit Engn Math, Innsbruck, Austria
[3] Univ Southampton, Sch Math, Southampton, England
基金
奥地利科学基金会;
关键词
low regularity; optimal transport; Ricci curvature bounds; synthetic geometry; tensor distributions; METRIC-MEASURE-SPACES; PENROSE SINGULARITY THEOREM; GEOMETRY;
D O I
10.1017/prm.2023.70
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We compare two standard approaches to defining lower Ricci curvature bounds for Riemannian metrics of regularity below $C<^>2$. These are, on the one hand, the synthetic definition via weak displacement convexity of entropy functionals in the framework of optimal transport, and the distributional one based on non-negativity of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds imply entropy bounds for metrics of class $C<^>1$ and that the converse holds for $C<^>{1,1}$-metrics under an additional convergence condition on regularizations of the metric.
引用
收藏
页码:1406 / 1430
页数:25
相关论文
共 50 条