DroidEncoder: Malware detection using auto-encoder based feature extractor and machine learning algorithms

被引:27
|
作者
Bakir, Halit [1 ]
Bakir, Rezan [1 ]
机构
[1] Sivas Univ Sci & Technol, Fac Engn & Nat Sci, Comp Engn Dept, Sivas, Turkiye
关键词
Auto encoder; Malware detection; Android application; Code analysis; HYBRID ANALYSIS; EFFICIENT; ENSEMBLE;
D O I
10.1016/j.compeleceng.2023.108804
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Android Malware detection became a hot topic over the last several years. Although considerable studies have been conducted utilizing machine learning-based methods, little attention has been dedicated to the feature extraction importance which considers an essential factor when using machine learning methods. Thus, in this study, we proposed a new feature extraction method based on the auto-encoder structure. Particularly, we propose DroidEncoder, a novel autoencoder-based model to classify Android malware applications. On the grounds of this, an image-based Android app dataset composed of 3000 malicious apps and 3000 benign apps is constructed. Then, three different auto-encoders, namely ANN-based auto-encoder, CNN-based auto-encoder, and VGG19-based auto-encoder have been proposed to extract features from the visualized Malware dataset. Three different experiments were conducted for extracting features in order to train multiple machine learning algorithms, such as decision tree, extra tree, k-nearest neighbors, LightGBM, XGBoost, Random forest, linear regression, and support vector machine. Furthermore, cross-validation alongside multiple metrics was used for evaluating the performance of the proposed models. According to the obtained results, the proposed method approved its affectivity with superior performance in terms of all metrics.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Extreme Learning Machine Based Modified Deep Auto-Encoder Network Classifier Algorithm
    Cao, Ruimin
    Wang, Fengli
    Hao, Lina
    COGNITIVE SYSTEMS AND SIGNAL PROCESSING, ICCSIP 2016, 2017, 710 : 173 - 180
  • [42] Learning Sparse Representation With Variational Auto-Encoder for Anomaly Detection
    Sun, Jiayu
    Wang, Xinzhou
    Xiong, Naixue
    Shao, Jie
    IEEE ACCESS, 2018, 6 : 33353 - 33361
  • [43] Malware Detection Method using Tree-based Machine Learning Algorithms
    Okada, Satoshi
    Matsuda, Wataru
    Fujimoto, Mariko
    Mitsunaga, Takuho
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING (ICOCO), 2021, : 103 - 108
  • [44] A Novel Malware Analysis for Malware Detection and Classification using Machine Learning Algorithms
    Sethi, Kamalakanta
    Chaudhary, Shankar Kumar
    Tripathy, Bata Krishan
    Bera, Padmalochan
    SIN'17: PROCEEDINGS OF THE 10TH INTERNATIONAL CONFERENCE ON SECURITY OF INFORMATION AND NETWORKS, 2017, : 107 - 113
  • [45] Unsupervised medical image feature learning by using de-melting reduction auto-encoder
    Sun, Yu
    Cong, Jinyu
    Zhang, Kuixing
    Jian, Muwei
    Wei, Benzheng
    NEUROCOMPUTING, 2023, 523 : 145 - 156
  • [46] Intrusion detection using deep sparse auto-encoder and self-taught learning
    Aqsa Saeed Qureshi
    Asifullah Khan
    Nauman Shamim
    Muhammad Hanif Durad
    Neural Computing and Applications, 2020, 32 : 3135 - 3147
  • [47] An Exploratory Analysis of Feature Selection for Malware Detection with Simple Machine Learning Algorithms
    Rahman, Md Ashikur
    Islam, Syful
    Nugroho, Yusuf Sulistyo
    Al Irsyadi, Fatah Yasin
    Hossain, Md Javed
    JOURNAL OF COMMUNICATIONS SOFTWARE AND SYSTEMS, 2023, 19 (03) : 207 - 219
  • [48] Deep fake detection using cascaded deep sparse auto-encoder for effective feature selection
    Balasubramanian, Saravana Balaji
    Kannan, Jagadeesh R.
    Prabu, P.
    Venkatachalam, K.
    Trojovsky, Pavel
    PEERJ COMPUTER SCIENCE, 2022, 8
  • [49] Compact feature hashing for machine learning based malware detection
    Moon, Damin
    Lee, JaeKoo
    Yoon, MyungKeun
    ICT EXPRESS, 2022, 8 (01): : 124 - 129
  • [50] Intrusion Detection System using Semi-Supervised Learning with Adversarial Auto-encoder
    Hara, Kazuki
    Shiomoto, Kohei
    NOMS 2020 - PROCEEDINGS OF THE 2020 IEEE/IFIP NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM 2020: MANAGEMENT IN THE AGE OF SOFTWARIZATION AND ARTIFICIAL INTELLIGENCE, 2020,