ON THE SOLUTION FOR THE DIFFUSION EQUATION RELATED TO THE L-FUNCTIONS ATTACHED TO CUSP FORMS

被引:1
|
作者
Yang, Xiao-Jun [1 ,2 ,3 ,4 ]
Abdel-Aty, Mahmoud [5 ]
Hayat, Tasawar [6 ,7 ]
机构
[1] China Univ Min & Technol, State Key Lab Geomech & Deep Underground Engn, Xuzhou, Peoples R China
[2] China Univ Min & Technol, Sch Math, Xuzhou, Peoples R China
[3] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[4] Kyung Hee Univ, Coll Sci, Dept Math, Seoul, South Korea
[5] Sohag Univ, Fac Sci, Math Dept, Sohag, Egypt
[6] Zewail City Sci & Technol, Ctr Photon & Smart Mat CPSM, Zewail, Egypt
[7] Quaid i Azam Univ, Dept Math, Islamabad, Pakistan
来源
THERMAL SCIENCE | 2023年 / 27卷 / 1B期
关键词
diffusion equation; entire function; L-functions; cusp forms; Fourier cosine transform;
D O I
10.2298/TSCI221106012Y
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this article we suggest the entire functions associated with the L-functions at-tached to cusp forms. The entire function defined by the Fourier cosine transform is the solution for the diffusion equation in 1-D case. We propose three conjectures for the zeros of three entire functions of order one via theory of entire functions.
引用
收藏
页码:521 / 526
页数:6
相关论文
共 50 条
  • [21] Nonvanishing of twists of L-functions attached to Hilbert modular forms
    Ryan, Nathan C.
    Tornaria, Gonzalo
    Voight, John
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2014, 17 : 330 - 348
  • [22] On Fractional Power Moments of L-functions Associated with Certain Cusp Forms
    Haiwei Sun
    Guangshi Lü
    Acta Applicandae Mathematicae, 2010, 109 : 653 - 667
  • [23] Simultaneous nonvanishing of products of L-functions associated to elliptic cusp forms
    Choie, YoungJu
    Kohnen, Winfried
    Zhang, Yichao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [24] On the zeros on the critical line of L-functions corresponding to automorphic cusp forms
    Rezvyakova, I. S.
    MATHEMATICAL NOTES, 2010, 88 (3-4) : 423 - 439
  • [25] On the mean square of Hecke L-functions associated to holomorphic cusp forms
    Egami, S
    NUMBER THEORY AND ITS APPLICATIONS, 1999, 2 : 101 - 110
  • [26] On mean values of mollifiers and L-functions associated to primitive cusp forms
    Kuhn, Patrick
    Robles, Nicolas
    Zeindler, Dirk
    MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 661 - 709
  • [27] On Fractional Power Moments of L-functions Associated with Certain Cusp Forms
    Sun, Haiwei
    Lue, Guangshi
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (02) : 653 - 667
  • [28] Zeros of a family of approximations of Hecke L-functions associated with cusp forms
    Junxian Li
    Arindam Roy
    Alexandru Zaharescu
    The Ramanujan Journal, 2016, 41 : 391 - 419
  • [29] On Fractional Power Moments of L-functions Associated with Certain Cusp Forms
    Haiwei Sun
    Guangshi Lü
    Acta Applicandae Mathematicae, 2010, 109 (2) : 669 - 670
  • [30] On mean values of mollifiers and L-functions associated to primitive cusp forms
    Patrick Kühn
    Nicolas Robles
    Dirk Zeindler
    Mathematische Zeitschrift, 2019, 291 : 661 - 709