Explainable AI for optimizing oxygen reduction on Pt monolayer core-shell catalysts

被引:2
|
作者
Omidvar, Noushin [1 ]
Wang, Shih-Han [1 ]
Huang, Yang [1 ]
Pillai, Hemanth Somarajan [1 ]
Athawale, Andy [1 ]
Wang, Siwen [1 ]
Achenie, Luke E. K. [1 ]
Xin, Hongliang [1 ]
机构
[1] Virginia Polytech Inst & State Univ, Dept Chem Engn, Blacksburg, VA 24060 USA
来源
ELECTROCHEMICAL SCIENCE ADVANCES | 2024年
基金
美国国家科学基金会;
关键词
d-band theory; electrocatalysis; interpretable deep learning; Newns-Anderson model; oxygen reduction reaction; DENSITY-FUNCTIONAL THEORY; ELECTRONIC-STRUCTURE; ANION ADSORPTION; SURFACE; PLATINUM; MODEL; REACTIVITY; CHEMISORPTION; CHEMISTRY; STRAIN;
D O I
10.1002/elsa.202300028
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
As a subfield of artificial intelligence (AI), machine learning (ML) has emerged as a versatile tool in accelerating catalytic materials discovery because of its ability to find complex patterns in high-dimensional data. While the intricacy of cutting-edge ML models, such as deep learning, makes them powerful, it also renders decision-making processes challenging to explain. Recent advances in explainable AI technologies, which aim to make the inner workings of ML models understandable to humans, have considerably increased our capacity to gain insights from data. In this study, taking the oxygen reduction reaction (ORR) on {111}-oriented Pt monolayer core-shell catalysts as an example, we show how the recently developed theory-infused neural network (TinNet) algorithm enables a rapid search for optimal site motifs with the chemisorption energy of hydroxyl (OH) as a single descriptor, revealing the underlying physical factors that govern the variations in site reactivity. By exploring a broad design space of Pt monolayer core-shell alloys (similar to 17,000$\sim 17,000$ candidates) that were generated from similar to 1500$\sim 1500$ thermodynamically stable bulk structures in existing material databases, we identified novel alloy systems along with previously known catalysts in the goldilocks zone of reactivity properties. SHAP (SHapley Additive exPlanations) analysis reveals the important role of adsorbate resonance energies that originate from sp$sp$-band interactions in chemical bonding at metal surfaces. Extracting physical insights into surface reactivity with explainable AI opens up new design pathways for optimizing catalytic performance beyond active sites.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Highly Durable Pt-Based Core-Shell Catalysts with Metallic and Oxidized Co Species for Boosting the Oxygen Reduction Reaction
    Weber, Philipp
    Weber, Daniel J.
    Dosche, Carsten
    Oezaslan, Mehtap
    ACS CATALYSIS, 2022, 12 (11) : 6394 - 6408
  • [42] Atomic controlled shell thickness on Pt@Pt 3 Ti core-shell nanoparticles for efficient and durable oxygen reduction
    Jiang, Haoran
    Wang, Zichen
    Chen, Suhao
    Xiao, Yong
    Zhu, Yu
    Wu, Wei
    Chen, Runzhe
    Cheng, Niancai
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2025, 205 : 212 - 220
  • [43] Shell-Thickness-Controlled Synthesis of Core-Shell Pd @ Pt Nanocubes and Tuning of Their Oxygen Reduction Activities
    Yang, Chia-Chen
    Liu, Zhe-Ting
    Lyu, Yuan-Ping
    Lee, Chien-Liang
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2017, 164 (02) : H112 - H118
  • [44] Optimized oxygen reduction activity by tuning shell component in Pd@Pt-based core-shell electrocatalysts
    Zhang, Yafeng
    Ye, Kai
    Gu, Qingqing
    Jiang, Qike
    Qin, Juan
    Leng, Deying
    Liu, Qianru
    Yang, Bing
    Yin, Feng
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2021, 604 : 301 - 309
  • [45] Effect of Core Size on Activity and Durability of Pt Core-Shell Catalysts for PEFCs
    Inaba, Minoru
    Ito, Hiroyuki
    Tuji, Hiroaki
    Wada, Teturo
    Banno, Michiko
    Yamada, Hirohisa
    Saito, Morihiro
    Tasaka, Akimasa
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 231 - +
  • [46] Effects of oxygen coverage, catalyst size, and core composition on Pt-alloy core-shell nanoparticles for oxygen reduction reaction
    Praserthdam, Supareak
    Balbuena, Perla B.
    CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (13) : 5168 - 5177
  • [47] Core-shell nanostructure supported Pt catalyst with improved electrocatalytic stability in oxygen reduction reaction
    Kim, Do-Young
    Han, Sang-Beom
    Lee, Young-Woo
    Park, Kyung-Won
    MATERIALS CHEMISTRY AND PHYSICS, 2013, 137 (03) : 704 - 708
  • [48] Influence of the composition of core-shell Au-Pt nanoparticle electrocatalysts for the oxygen reduction reaction
    Li, Xiaowei
    Liu, Juanying
    He, Wei
    Huang, Qinhong
    Yang, Hui
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2010, 344 (01) : 132 - 136
  • [49] Ni@Pt core-shell nanoparticles with enhanced catalytic activity for oxygen reduction reaction
    Wang, Guoxiu
    Wu, Huimin
    Wexler, David
    Liu, Huakun
    Savadogo, Oumarou
    JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 503 (01) : L1 - L4
  • [50] Fe@Pt core-shell nanoparticles as electrocatalyst for oxygen reduction reaction in acidic media
    Huang, Yanli
    Tan, Zhan
    Wu, Huimin
    Feng, Chuanqi
    Ding, Yu
    IONICS, 2018, 24 (01) : 229 - 236