Siamese pyramidal deep learning network for strain estimation in 3D cardiac cine-MR

被引:3
|
作者
V. Graves, Catharine [1 ,2 ]
Rebelo, Marina F. S. [1 ]
Moreno, Ramon A. [1 ]
Dantas-Jr, Roberto N. [1 ]
Assuncao Jr, Antonildes N. [1 ]
Nomura, Cesar H. [1 ]
Gutierrez, Marco A. [1 ,2 ]
机构
[1] Univ Sao Paulo, Fac Med, Inst Coracao HCFMUSP, Sao Paulo, SP, Brazil
[2] Univ Sao Paulo, Escola Politecn, Sao Paulo, SP, Brazil
关键词
Myocardium strain; Cardiac magnetic resonance; Deep learning; LEFT-VENTRICLE; OPTICAL-FLOW; SEGMENTATION; MOTION;
D O I
10.1016/j.compmedimag.2023.102283
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Strain represents the quantification of regional tissue deformation within a given area. Myocardial strain has demonstrated considerable utility as an indicator for the assessment of cardiac function. Notably, it exhibits greater sensitivity in detecting subtle myocardial abnormalities compared to conventional cardiac function indices, like left ventricle ejection fraction (LVEF). Nonetheless, the estimation of strain poses considerable challenges due to the necessity for precise tracking of myocardial motion throughout the complete cardiac cycle. This study introduces a novel deep learning-based pipeline, designed to automatically and accurately estimate myocardial strain from three-dimensional (3D) cine-MR images. Consequently, our investigation presents a comprehensive pipeline for the precise quantification of local and global myocardial strain. This pipeline incorporates a supervised Convolutional Neural Network (CNN) for accurate segmentation of the cardiac muscle and an unsupervised CNN for robust left ventricle motion tracking, enabling the estimation of strain in both artificial phantoms and real cine-MR images. Our investigation involved a comprehensive comparison of our findings with those obtained from two commonly utilized commercial software in this field. This analysis encompassed the examination of both intra- and inter-user variability. The proposed pipeline exhibited demonstrable reliability and reduced divergence levels when compared to alternative systems. Additionally, our approach is entirely independent of previous user data, effectively eliminating any potential user bias that could influence the strain analyses.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] CLIFF CHANGE DETECTION USING SIAMESE KPCONV DEEP NETWORK ON 3D POINT CLOUDS
    de Gelis, I
    Bessin, Z.
    Letortu, P.
    Jaud, M.
    Delacourt, C.
    Costa, S.
    Maquaire, O.
    Davidson, R.
    Corpetti, T.
    Lefevre, S.
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 649 - 656
  • [22] 3D Tongue Motion from Tagged and Cine MR Images
    Xing, Fangxu
    Woo, Jonghye
    Murano, Emi Z.
    Lee, Junghoon
    Stone, Maureen
    Prince, Jerry L.
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION (MICCAI 2013), PT III, 2013, 8151 : 41 - 48
  • [23] 3D human pose estimation with siamese equivariant embedding
    Veges, Marton
    Varga, Viktor
    Lorincz, Andras
    NEUROCOMPUTING, 2019, 339 : 194 - 201
  • [24] Untangling and segmenting the small intestine in 3D cine-MRI using deep learning
    van Harten, Louis D.
    de Jonge, Catharina S.
    Beek, Kim J.
    Stoker, Jaap
    Isgum, Ivana
    MEDICAL IMAGE ANALYSIS, 2022, 78
  • [25] Lung Nodule Detection With Deep Learning in 3D Thoracic MR Images
    Li, Yanfeng
    Zhang, Linlin
    Chen, Houjin
    Yang, Na
    IEEE ACCESS, 2019, 7 (37822-37832) : 37822 - 37832
  • [26] Learning deep similarity metric for 3D MR–TRUS image registration
    Grant Haskins
    Jochen Kruecker
    Uwe Kruger
    Sheng Xu
    Peter A. Pinto
    Brad J. Wood
    Pingkun Yan
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 417 - 425
  • [27] Deep learning-Based 3D inpainting of brain MR images
    Seung Kwan Kang
    Seong A. Shin
    Seongho Seo
    Min Soo Byun
    Dong Young Lee
    Yu Kyeong Kim
    Dong Soo Lee
    Jae Sung Lee
    Scientific Reports, 11
  • [28] Deep learning-Based 3D inpainting of brain MR images
    Kang, Seung Kwan
    Shin, Seong A.
    Seo, Seongho
    Byun, Min Soo
    Lee, Dong Young
    Kim, Yu Kyeong
    Lee, Dong Soo
    Lee, Jae Sung
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [29] Hierarchical Template Matching for 3D Myocardial Tracking and Cardiac Strain Estimation
    Jayendra M. Bhalodiya
    Arnab Palit
    Enzo Ferrante
    Manoj K. Tiwari
    Sunil K. Bhudia
    Theodoros N. Arvanitis
    Mark A. Williams
    Scientific Reports, 9
  • [30] Hierarchical Template Matching for 3D Myocardial Tracking and Cardiac Strain Estimation
    Bhalodiya, Jayendra M.
    Palit, Arnab
    Ferrante, Enzo
    Tiwari, Manoj K.
    Bhudia, Sunil K.
    Arvanitis, Theodoros N.
    Williams, Mark A.
    SCIENTIFIC REPORTS, 2019, 9 (1)