Siamese pyramidal deep learning network for strain estimation in 3D cardiac cine-MR

被引:3
|
作者
V. Graves, Catharine [1 ,2 ]
Rebelo, Marina F. S. [1 ]
Moreno, Ramon A. [1 ]
Dantas-Jr, Roberto N. [1 ]
Assuncao Jr, Antonildes N. [1 ]
Nomura, Cesar H. [1 ]
Gutierrez, Marco A. [1 ,2 ]
机构
[1] Univ Sao Paulo, Fac Med, Inst Coracao HCFMUSP, Sao Paulo, SP, Brazil
[2] Univ Sao Paulo, Escola Politecn, Sao Paulo, SP, Brazil
关键词
Myocardium strain; Cardiac magnetic resonance; Deep learning; LEFT-VENTRICLE; OPTICAL-FLOW; SEGMENTATION; MOTION;
D O I
10.1016/j.compmedimag.2023.102283
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Strain represents the quantification of regional tissue deformation within a given area. Myocardial strain has demonstrated considerable utility as an indicator for the assessment of cardiac function. Notably, it exhibits greater sensitivity in detecting subtle myocardial abnormalities compared to conventional cardiac function indices, like left ventricle ejection fraction (LVEF). Nonetheless, the estimation of strain poses considerable challenges due to the necessity for precise tracking of myocardial motion throughout the complete cardiac cycle. This study introduces a novel deep learning-based pipeline, designed to automatically and accurately estimate myocardial strain from three-dimensional (3D) cine-MR images. Consequently, our investigation presents a comprehensive pipeline for the precise quantification of local and global myocardial strain. This pipeline incorporates a supervised Convolutional Neural Network (CNN) for accurate segmentation of the cardiac muscle and an unsupervised CNN for robust left ventricle motion tracking, enabling the estimation of strain in both artificial phantoms and real cine-MR images. Our investigation involved a comprehensive comparison of our findings with those obtained from two commonly utilized commercial software in this field. This analysis encompassed the examination of both intra- and inter-user variability. The proposed pipeline exhibited demonstrable reliability and reduced divergence levels when compared to alternative systems. Additionally, our approach is entirely independent of previous user data, effectively eliminating any potential user bias that could influence the strain analyses.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] 3D visualization of myocardial motion and blood flow using cine-MR images
    Oshiro, O
    Matani, A
    Chihara, K
    Mikami, T
    Kitabatake, A
    PROCEEDINGS OF THE 18TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 18, PTS 1-5, 1997, 18 : 658 - 659
  • [2] Fast 3D cardiac cine MR imaging
    Alley, MT
    Napel, S
    Amano, Y
    Paik, DS
    Shifrin, RY
    Shimakawa, A
    Pelc, NJ
    Herfkens, RJ
    JMRI-JOURNAL OF MAGNETIC RESONANCE IMAGING, 1999, 9 (05): : 751 - 755
  • [3] Deep Learning Based Cine-MR Image Prediction and Analysis for Abdominal Motion
    Weng, J.
    Bhupathiraju, S.
    Samant, T.
    Dresner, A.
    Wu, J.
    Samant, S.
    MEDICAL PHYSICS, 2022, 49 (06) : E498 - E498
  • [4] Seminal vesicle motion tracking in 3D cine-MR during MR-Linac prostate treatments
    Keizer, D. De Muinck
    Willigenburg, T.
    Den Hartogh, M. D.
    van Zyp, J. R. N. Van der Voort
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    De Boer, H. C. J.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : S180 - S181
  • [5] A rapid 3D cine MR sequence for cardiac imaging
    Alley, MT
    Shifrin, RY
    Pelc, NJ
    Herfkens, RJ
    RADIOLOGY, 1997, 205 : 303 - 303
  • [6] Soft-tissue prostate intrafraction motion tracking in 3D cine-MR for MR-guided radiotherapy
    Keizer, D. M. de Muinck
    Kerkmeijer, L. G. W.
    Maspero, M.
    Andreychenko, A.
    van Zyp, J. R. N. van der Voort
    van den Berg, C. A. T.
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    de Boer, J. C. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2019, 64 (23):
  • [7] Impact of bladder filling on the magnitude of prostate intra-fraction motion assessed in 3D Cine-MR
    De Boer, H.
    Keizer, D. M. De Muinck
    van Zyp, J. R. N. Voort
    Van den Berg, N. A. T.
    Pos, F. J.
    Van der Heide, U. A.
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    Kerkmeijer, L. G. W.
    RADIOTHERAPY AND ONCOLOGY, 2019, 133 : S209 - S210
  • [8] Dosimetric impact of soft-tissue based intrafraction motion from 3D cine-MR in prostate SBRT
    Keizer, D. M. de Muinck
    Kontaxis, C.
    Kerkmeijer, L. G. W.
    van Zyp, J. R. N. van der Voorst
    van den Berg, C. A. T.
    Raaymakers, B. W.
    Lagendijk, J. J. W.
    de Boer, J. C. J.
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (02):
  • [9] Automated cardiac motion estimation from 3D Cine DENSE MRI
    Andrew D Gilliam
    Xiaodong Zhong
    Frederick H Epstein
    Journal of Cardiovascular Magnetic Resonance, 14 (Suppl 1)
  • [10] An Exploration of 2D and 3D Deep Learning Techniques for Cardiac MR Image Segmentation
    Baumgartner, Christian F.
    Koch, Lisa M.
    Pollefeys, Marc
    Konukoglu, Ender
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: ACDC AND MMWHS CHALLENGES, 2018, 10663 : 111 - 119