Computational Optimal Transport and Filtering on Riemannian Manifolds

被引:1
|
作者
Grange, Daniel [1 ]
Al-Jarrah, Mohammad [2 ]
Baptista, Ricardo [3 ]
Taghvaei, Amirhossein [2 ]
Georgiou, Tryphon T. [4 ]
Phillips, Sean [5 ]
Tannenbaum, Allen [1 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Bellmore, NY 11794 USA
[2] Univ Washington, Dept Aeronaut & Astronaut, Seattle, WA 98195 USA
[3] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[4] Univ Calif Irvine, Dept Mech & Aerosp Engn, Irvine, CA 92697 USA
[5] Air Force Res Lab, Space Vehicles Directorate, Albuquerque, NM 87116 USA
来源
IEEE CONTROL SYSTEMS LETTERS | 2023年 / 7卷
关键词
Optimal transportation; optimal control; nonlinear filtering; Riemannian manifolds; OPTIMAL MASS-TRANSPORT; POLAR FACTORIZATION; ATTITUDE;
D O I
10.1109/LCSYS.2023.3331834
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this letter we extend recent developments in computational optimal transport to the setting of Riemannian manifolds. In particular, we show how to learn optimal transport maps from samples that relate probability distributions defined on manifolds. Specializing these maps for sampling conditional probability distributions provides an ensemble approach for solving nonlinear filtering problems defined on such geometries. The proposed computational methodology is illustrated with examples of transport and nonlinear filtering on Lie groups, including the circle S1, the special Euclidean group SE(2), and the special orthogonal group SO(3).
引用
收藏
页码:3495 / 3500
页数:6
相关论文
共 50 条
  • [31] Optimal Configurations of Finite Sets in Riemannian 2-Manifolds
    Peter M. Gruber
    Geometriae Dedicata, 2001, 84 : 271 - 320
  • [32] NEIGHBORING EXTREMAL OPTIMAL CONTROL FOR MECHANICAL SYSTEMS ON RIEMANNIAN MANIFOLDS
    Bloch, Anthony M.
    Gupta, Rohit
    Kolmanovsky, Ilya V.
    JOURNAL OF GEOMETRIC MECHANICS, 2016, 8 (03): : 257 - 272
  • [33] General optimal Lp-Nash inequalities on Riemannian manifolds
    Ceccon, Jurandir
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 15 : 435 - 457
  • [34] Hypercontractivity Property and General Optimal -Entropy Inequalities on Riemannian Manifolds
    Alves, Marcos Teixeira
    Ceccon, Jurandir
    Oquendo, Higidio Portillo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2018, 49 (02): : 339 - 367
  • [35] Optimal configurations of finite sets in Riemannian 2-manifolds
    Gruber, PM
    GEOMETRIAE DEDICATA, 2001, 84 (1-3) : 271 - 320
  • [36] Optimal Hardy-Sobolev inequalities on compact Riemannian manifolds
    Jaber, Hassan
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) : 1869 - 1888
  • [37] Optimal Nash's inequalities on Riemannian manifolds: The influence of geometry
    Druet, O
    Hebey, E
    Vaugon, M
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 1999, 1999 (14) : 735 - 779
  • [38] AN OPTIMAL LOWER CURVATURE BOUND FOR CONVEX HYPERSURFACES IN RIEMANNIAN MANIFOLDS
    Alexander, Stephanie
    Kapovitch, Vitali
    Petrunin, Anton
    ILLINOIS JOURNAL OF MATHEMATICS, 2008, 52 (03) : 1031 - 1033
  • [39] A FANNING SCHEME FOR THE PARALLEL TRANSPORT ALONG GEODESICS ON RIEMANNIAN MANIFOLDS
    Louis, Maxime
    Charlier, Benjamin
    Jusselin, Paul
    Pal, Susovan
    Durrleman, Stanley
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2018, 56 (04) : 2563 - 2584
  • [40] On the smoothness of the potential function in Riemannian optimal transport
    Delanoe, Philippe
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2015, 23 (01) : 11 - 89