AN END-TO-END MACHINE LEARNING PIPELINE FOR THE AUTOMATED DETECTION OF RADIOGRAPHIC HAND OSTEOARTHRITIS: A NO-CODING PLATFORM EXPERIENCE

被引:0
|
作者
Caratsch, L. [1 ]
Lechtenboehmer, C. [2 ]
Caorsi, M. [3 ]
Oung, K. [4 ]
Zanchi, F. [4 ]
Aleman, Y. [4 ]
Omoumi, P. [4 ]
Hugle, T. [1 ]
机构
[1] Univ Hosp Lausanne CHUV, Dept Rheumatol, Lausanne, Switzerland
[2] Univ Hosp Basel, Dept Radiol, Basel, Switzerland
[3] EPFL Innovat Pk, L2F, Lausanne, Switzerland
[4] Univ Hosp Lausanne CHUV, Dept Radiol, Lausanne, Switzerland
关键词
Osteoarthritis; Artificial intelligence; Imaging;
D O I
10.1136/annrheumdis-2023-eular.3422
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
POS0892
引用
收藏
页码:753 / 754
页数:2
相关论文
共 38 条
  • [31] POTION: an end-to-end pipeline for positive Darwinian selection detection in genome-scale data through phylogenetic comparison of protein-coding genes
    Hongo, Jorge A.
    de Castro, Giovanni M.
    Cintra, Leandro C.
    Zerlotini, Adhemar
    Lobo, Francisco P.
    BMC GENOMICS, 2015, 16
  • [32] Cer-ConvN3Unet: an end-to-end multi-parametric MRI-based pipeline for automated detection and segmentation of cervical cancer
    Xia, Shao-Jun
    Zhao, Bo
    Li, Yingming
    Kong, Xiangxing
    Wang, Zhi-Nan
    Yang, Qingmo
    Wu, Jia-Qi
    Li, Haijiao
    Cao, Kun
    Zhu, Hai-Tao
    Li, Xiao-Ting
    Zhang, Xiao-Yan
    Sun, Ying-Shi
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2025, 9 (01)
  • [33] End-to-end machine learning for experimental physics: using simulated data to train a neural network for object detection in video microscopy
    Minor, Eric N.
    Howard, Stian D.
    Green, Adam A. S.
    Glaser, Matthew A.
    Park, Cheol S.
    Clark, Noel A.
    SOFT MATTER, 2020, 16 (07) : 1751 - 1759
  • [34] Comparing two classes of end-to-end machine-learning models in lung nodule detection and classification: MTANNs vs. CNNs
    Tajbakhsh, Nima
    Suzuki, Kenji
    PATTERN RECOGNITION, 2017, 63 : 476 - 486
  • [35] Automatic brain MRI motion artifact detection based on end-to-end deep learning is similarly effective as traditional machine learning trained on image quality metrics
    Vakli, Pal
    Weiss, Bela
    Szalma, Janos
    Barsi, Peter
    Gyuricza, Istvan
    Kemenczky, Peter
    Somogyi, Eszter
    Narai, Adam
    Gal, Viktor
    Hermann, Petra
    Vidnyanszky, Zoltan
    MEDICAL IMAGE ANALYSIS, 2023, 88
  • [36] Secure and privacy-preserving automated machine learning operations into end-to-end integrated IoT-edge-artificial intelligence-blockchain for diabetes mellitus
    Hennebelle, Alain
    Ismail, Leila
    Materwala, Huned
    Al Kaabi, Juma
    Ranjan, Priya
    Janardhanan, Rajiv
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 212 - 233
  • [37] BioPrediction-RPI: Democratizing the prediction of interaction between non-coding RNA and protein with end-to-end machine learning (vol 23, pg 2267, 2024)
    Florentino, Bruno Rafael
    Bonidia, Robson Parmezan
    Sanches, Natan Henrique
    da Rocha, Ulisses N.
    de Carvalho, Andre C. P. L. F.
    COMPUTATIONAL AND STRUCTURAL BIOTECHNOLOGY JOURNAL, 2024, 23 : 3019 - 3019
  • [38] DART: An automated end-to-end object detection pipeline with data D iversification, open-vocabulary bounding box A nnotation, pseudo-label R eview, and model Training
    Xin, Chen
    Hartel, Andreas
    Kasneci, Enkelejda
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 258