Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection

被引:14
|
作者
Lin, Chih-Hsueh [1 ,2 ]
Hsu, Ping-I [3 ]
Tseng, Chin-Dar [1 ,2 ]
Chao, Pei-Ju [1 ,2 ]
Wu, I-Ting [3 ]
Ghose, Supratip [4 ]
Shih, Chih-An [5 ,6 ]
Lee, Shen-Hao [1 ,2 ,7 ,8 ]
Ren, Jia-Hong [1 ,2 ]
Shie, Chang-Bih [3 ]
Lee, Tsair-Fwu [1 ,2 ,9 ,10 ,11 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung 80778, Taiwan
[2] Natl Kaohsiung Univ Sci & Technol, Med Phys & Informat Lab Elect Engn, Kaohsiung 80778, Taiwan
[3] China Med Univ, An Nan Hosp, Div Gastroenterol, Dept Med, Tainan, Taiwan
[4] China Med Univ, An Nan Hosp, Dept Educ & Res, Tainan, Taiwan
[5] Antai Tian Sheng Mem Hosp, Antai Med Care Corp, Div Gastroenterol & Hepatol, Dept Internal Med, Donggan, Pingtung, Taiwan
[6] Meiho Univ, Dept Nursing, Neipu, Pingtung, Taiwan
[7] Linkou Chang Gung Mem Hosp, Dept Radiat Oncol, Linkou, Taiwan
[8] Chang Gung Univ, Coll Med, Linkou, Taiwan
[9] Kaohsiung Med Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 80708, Taiwan
[10] Kaohsiung Med Univ, PhD Program Biomed Engn, Kaohsiung 80708, Taiwan
[11] Kaohsiung Med Univ, Coll Dent Med, Sch Dent, Kaohsiung 80708, Taiwan
关键词
CLASSIFICATION; TESTS;
D O I
10.1038/s41598-023-40179-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a gastroenterologists' impression of endoscopic images is inaccurate and cannot be used for the management of gastrointestinal diseases. The aim of this study was to develop an artificial intelligence classification system for the diagnosis of H. pylori infection by pre-processing endoscopic images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan Hospital were obtained for the derivation and validation of an artificial intelligence classification system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network (CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with different classification models for deep learning of gastric images. The comprehensive assessment for H. pylori status by scSE-CatBoost classification models for both body and antrum images from same patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an artificial intelligence classification model using scSE-CatBoost deep learning for gastric endoscopic images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis of H. pylori infection in clinical practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Helicobacter pylori infection and gastric cancer
    Ninashvili, N.
    Shavdia, M.
    HELICOBACTER, 2007, 12 (04) : 456 - 457
  • [22] Helicobacter pylori infection and gastric cancer
    O'Morain, C
    BRITISH JOURNAL OF SURGERY, 2005, 92 (10) : 1187 - 1188
  • [23] Helicobacter pylori infection and gastric cancer
    Goldstone, AR
    Quirke, P
    Dixon, MF
    JOURNAL OF PATHOLOGY, 1996, 179 (02): : 129 - 137
  • [24] Application of Artificial Intelligence in Early Gastric Cancer Diagnosis
    Xiao, Zili
    Ji, Danian
    Li, Feng
    Li, Zhengliang
    Bao, Zhijun
    DIGESTION, 2022, 103 (01) : 69 - 75
  • [25] The Accuracy of Artificial Intelligence in the Endoscopic Diagnosis of Early Gastric Cancer: Pooled Analysis Study
    Chen, Pei-Chin
    Lu, Yun-Ru
    Kang, Yi-No
    Chang, Chun-Chao
    JOURNAL OF MEDICAL INTERNET RESEARCH, 2022, 24 (05)
  • [26] Diagnosis of Helicobacter pylori infection in gastric mucosa by endoscopic features: A multicenter prospective study
    Kato, Takahiro
    Yagi, Nobuaki
    Kamada, Tomoari
    Shimbo, Takuro
    Watanabe, Hidenobu
    Ida, Kazunori
    DIGESTIVE ENDOSCOPY, 2013, 25 (05) : 508 - 518
  • [27] Helicobacter pylori Infection, the Gastric Microbiome and Gastric Cancer
    Pereira-Marques, Joana
    Ferreira, Rui M.
    Pinto-Ribeiro, Ines
    Figueiredo, Ceu
    HELICOBACTER PYLORI IN HUMAN DISEASES: ADVANCES IN MICROBIOLOGY, INFECTIOUS DISEASES AND PUBLIC HEALTH. VOL 11, 2019, 1149 : 195 - 210
  • [28] Novel endoscopic techniques for the diagnosis of gastric Helicobacter pylori infection: a systematic review and network meta-analysis
    Hao, Wenzhe
    Huang, Lin
    Li, Xuejun
    Jia, Hongyu
    FRONTIERS IN MICROBIOLOGY, 2024, 15
  • [29] Helicobacter pylori infection and gastric cancer in Thailand
    Vilaichone, R
    Tumwasorn, S
    Mahachai, V
    HELICOBACTER, 2005, 10 (05) : 510 - 510
  • [30] Helicobacter pylori Infection, Gastric Cancer and Gastropanel
    Loor, Alexandra
    Dumitrascu, D. L.
    ROMANIAN JOURNAL OF INTERNAL MEDICINE, 2016, 54 (03) : 151 - 156