Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection

被引:14
|
作者
Lin, Chih-Hsueh [1 ,2 ]
Hsu, Ping-I [3 ]
Tseng, Chin-Dar [1 ,2 ]
Chao, Pei-Ju [1 ,2 ]
Wu, I-Ting [3 ]
Ghose, Supratip [4 ]
Shih, Chih-An [5 ,6 ]
Lee, Shen-Hao [1 ,2 ,7 ,8 ]
Ren, Jia-Hong [1 ,2 ]
Shie, Chang-Bih [3 ]
Lee, Tsair-Fwu [1 ,2 ,9 ,10 ,11 ]
机构
[1] Natl Kaohsiung Univ Sci & Technol, Dept Elect Engn, Kaohsiung 80778, Taiwan
[2] Natl Kaohsiung Univ Sci & Technol, Med Phys & Informat Lab Elect Engn, Kaohsiung 80778, Taiwan
[3] China Med Univ, An Nan Hosp, Div Gastroenterol, Dept Med, Tainan, Taiwan
[4] China Med Univ, An Nan Hosp, Dept Educ & Res, Tainan, Taiwan
[5] Antai Tian Sheng Mem Hosp, Antai Med Care Corp, Div Gastroenterol & Hepatol, Dept Internal Med, Donggan, Pingtung, Taiwan
[6] Meiho Univ, Dept Nursing, Neipu, Pingtung, Taiwan
[7] Linkou Chang Gung Mem Hosp, Dept Radiat Oncol, Linkou, Taiwan
[8] Chang Gung Univ, Coll Med, Linkou, Taiwan
[9] Kaohsiung Med Univ, Dept Med Imaging & Radiol Sci, Kaohsiung 80708, Taiwan
[10] Kaohsiung Med Univ, PhD Program Biomed Engn, Kaohsiung 80708, Taiwan
[11] Kaohsiung Med Univ, Coll Dent Med, Sch Dent, Kaohsiung 80708, Taiwan
关键词
CLASSIFICATION; TESTS;
D O I
10.1038/s41598-023-40179-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Helicobacter pylori (H. pylori) infection is the principal cause of chronic gastritis, gastric ulcers, duodenal ulcers, and gastric cancer. In clinical practice, diagnosis of H. pylori infection by a gastroenterologists' impression of endoscopic images is inaccurate and cannot be used for the management of gastrointestinal diseases. The aim of this study was to develop an artificial intelligence classification system for the diagnosis of H. pylori infection by pre-processing endoscopic images and machine learning methods. Endoscopic images of the gastric body and antrum from 302 patients receiving endoscopy with confirmation of H. pylori status by a rapid urease test at An Nan Hospital were obtained for the derivation and validation of an artificial intelligence classification system. The H. pylori status was interpreted as positive or negative by Convolutional Neural Network (CNN) and Concurrent Spatial and Channel Squeeze and Excitation (scSE) network, combined with different classification models for deep learning of gastric images. The comprehensive assessment for H. pylori status by scSE-CatBoost classification models for both body and antrum images from same patients achieved an accuracy of 0.90, sensitivity of 1.00, specificity of 0.81, positive predictive value of 0.82, negative predicted value of 1.00, and area under the curve of 0.88. The data suggest that an artificial intelligence classification model using scSE-CatBoost deep learning for gastric endoscopic images can distinguish H. pylori status with good performance and is useful for the survey or diagnosis of H. pylori infection in clinical practice.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen-Helicobacter pylori infection
    Chih-Hsueh Lin
    Ping-I Hsu
    Chin-Dar Tseng
    Pei-Ju Chao
    I-Ting Wu
    Supratip Ghose
    Chih-An Shih
    Shen-Hao Lee
    Jia-Hong Ren
    Chang-Bih Shie
    Tsair-Fwu Lee
    Scientific Reports, 13
  • [2] Application of artificial intelligence in the endoscopic diagnosis of early gastric cancer, atrophic gastritis, and Helicobacter pylori infection
    Luo, Qi
    Yang, Hang
    Hu, Bing
    JOURNAL OF DIGESTIVE DISEASES, 2022, 23 (12) : 666 - 674
  • [3] Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis
    Osamu Toyoshima
    Toshihiro Nishizawa
    Kazuhiko Koike
    World Journal of Gastroenterology, 2020, (05) : 466 - 477
  • [4] Endoscopic Kyoto classification of Helicobacter pylori infection and gastric cancer risk diagnosis
    Toyoshima, Osamu
    Nishizawa, Toshihiro
    Koike, Kazuhiko
    WORLD JOURNAL OF GASTROENTEROLOGY, 2020, 26 (05) : 466 - 477
  • [5] Systematic review and meta-analysis: Artificial intelligence for the diagnosis of gastric precancerous lesions and Helicobacter pylori infection
    Dilaghi, E.
    Lahner, E.
    Annibale, B.
    Esposito, G.
    DIGESTIVE AND LIVER DISEASE, 2022, 54 (12) : 1630 - 1638
  • [6] Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer
    Yu-Jer Hsiao
    Yuan-Chih Wen
    Wei-Yi Lai
    Yi-Ying Lin
    Yi-Ping Yang
    Yueh Chien
    Aliaksandr A Yarmishyn
    De-Kuang Hwang
    Tai-Chi Lin
    Yun-Chia Chang
    Ting-Yi Lin
    Kao-Jung Chang
    Shih-Hwa Chiou
    Ying-Chun Jheng
    World Journal of Gastroenterology, 2021, 27 (22) : 2979 - 2993
  • [7] Application of artificial intelligence-driven endoscopic screening and diagnosis of gastric cancer
    Hsiao, Yu-Jer
    Wen, Yuan-Chih
    Lai, Wei-Yi
    Lin, Yi-Ying
    Yang, Yi-Ping
    Chien, Yueh
    Yarmishyn, Aliaksandr A.
    Hwang, De-Kuang
    Lin, Tai-Chi
    Chang, Yun-Chia
    Lin, Ting-Yi
    Chang, Kao-Jung
    Chiou, Shih-Hwa
    Jheng, Ying-Chun
    WORLD JOURNAL OF GASTROENTEROLOGY, 2021, 27 (22) : 2979 - 2993
  • [8] Use of digital pathology and artificial intelligence for the diagnosis of Helicobacter pylori in gastric biopsies
    Liscia, Daniel S.
    D'Andrea, Mariangela
    Biletta, Elena
    Bellis, Donata
    Demo, Kejsi
    Ferrero, Franco
    Petti, Alberto
    Butinar, Roberto
    D'Andrea, Enzo
    Davini, Giuditta
    PATHOLOGICA, 2022, 114 (04) : 295 - 303
  • [9] Helicobacter pylori Infection following Endoscopic Resection of Early Gastric Cancer
    Li, Lan
    Yu, Chaohui
    BIOMED RESEARCH INTERNATIONAL, 2019, 2019
  • [10] Artificial intelligence efficiently predicts gastric lesions, Helicobacter pylori infection and lymph node metastasis upon endoscopic images
    Yang, Ruixin
    Zhang, Jialin
    Zhan, Fengsheng
    Yan, Chao
    Lu, Sheng
    Zhu, Zhenggang
    An, Kang
    Sun, Jing
    Yu, Yingyan
    CHINESE JOURNAL OF CANCER RESEARCH, 2024, 36 (05)