Handling a Commensurate, Incommensurate, and Singular Fractional-Order Linear Time-Invariant System

被引:1
|
作者
Batiha, Iqbal M. [1 ,2 ]
Talafha, Omar [3 ]
Ababneh, Osama Y. [4 ]
Alshorm, Shameseddin [1 ]
Momani, Shaher [2 ,5 ]
机构
[1] Al Zaytoonah Univ Jordan, Dept Math, Amman 11733, Jordan
[2] Ajman Univ, Nonlinear Dynam Res Ctr NDRC, POB 346, Ajman, U Arab Emirates
[3] Irbid Natl Univ, Fac Sci & Technol, Dept Math, Irbid 21110, Jordan
[4] Zarqa Univ, Fac Sci, Dept Math, Zarqa 13110, Jordan
[5] Univ Jordan, Fac Sci, Dept Math, Amman 11942, Jordan
关键词
linear time-invariant system; Adomian decomposition method (ADM); Caputo fractional-order derivative; ADOMIAN DECOMPOSITION METHOD; BOUNDARY-VALUE-PROBLEMS;
D O I
10.3390/axioms12080771
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
From the perspective of the importance of the fractional-order linear time-invariant (FoLTI) system in plenty of applied science fields, such as control theory, signal processing, and communications, this work aims to provide certain generic solutions for commensurate and incommensurate cases of these systems in light of the Adomian decomposition method. Accordingly, we also generate another general solution of the singular FoLTI system with the use of the same methodology. Several more numerical examples are given to illustrate the core points of the perturbations of the considered singular FoLTI systems that can ultimately generate a variety of corresponding solutions.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] H∞ and Sliding Mode Observers for Linear Time-Invariant Fractional-Order Dynamic Systems With Initial Memory Effect
    Lee, Sang-Chul
    Li, Yan
    Chen, YangQuan
    Ahn, Hyo-Sung
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2014, 136 (05):
  • [32] Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives
    Debbouche, Nadjette
    Ouannas, Adel
    Grassi, Giuseppe
    Al-Hussein, Abdul-Basset A.
    Tahir, Fadhil Rahma
    Saad, Khaled M.
    Jahanshahi, Hadi
    Aly, Ayman A.
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2022, 2022
  • [33] Chaos in Cancer Tumor Growth Model with Commensurate and Incommensurate Fractional-Order Derivatives
    Debbouche, Nadjette
    Ouannas, Adel
    Grassi, Giuseppe
    Al-Hussein, Abdul-Basset A.
    Tahir, Fadhil Rahma
    Saad, Khaled M.
    Jahanshahi, Hadi
    Aly, Ayman A.
    Computational and Mathematical Methods in Medicine, 2022, 2022
  • [34] Fractional Time-Invariant Compartmental Linear Systems
    Kaczorek, Tadeusz
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS AND COMPUTER SCIENCE, 2023, 33 (01) : 97 - 102
  • [35] A graphical approach for stability and robustness analysis in commensurate and incommensurate fractional-order systems
    Shen, Yaohua
    Wang, Yunjian
    Yuan, Nana
    ASIAN JOURNAL OF CONTROL, 2020, 22 (03) : 1241 - 1252
  • [36] On the Stability of Linear Incommensurate Fractional-Order Difference Systems
    Djenina, Noureddine
    Ouannas, Adel
    Batiha, Iqbal M.
    Grassi, Giuseppe
    Pham, Viet-Thanh
    MATHEMATICS, 2020, 8 (10) : 1 - 12
  • [37] Stabilization of a new commensurate/incommensurate fractional order chaotic system
    Gholamin, P.
    Sheikhani, A. H. Refahi
    Ansari, A.
    ASIAN JOURNAL OF CONTROL, 2021, 23 (02) : 882 - 893
  • [38] Stability Analysis for a Class of Fractional-Order System with Commensurate Order
    Wang, Dongfeng
    Wang, Xiaoyan
    Han, Pu
    2010 8TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2010, : 3472 - 3478
  • [39] Mixed Order Fractional Observers for Minimal Realizations of Linear Time-Invariant Systems
    Duarte-Mermoud, Manuel A.
    Gallegos, Javier A.
    Aguila-Camacho, Norelys
    Castro-Linares, Rafael
    ALGORITHMS, 2018, 11 (09)
  • [40] On the Stability of Linear Fractional-Order Singular Systems
    Nosrati, Komeil
    Shafiee, Masoud
    2019 27TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2019), 2019, : 956 - 961