Resistance hysteresis in the integer and fractional quantum Hall regime

被引:0
|
作者
Peraticos, E. [1 ,2 ,7 ]
Kumar, S. [1 ]
Pepper, M. [1 ,2 ]
Siddiki, A. [3 ,4 ]
Farrer, I. [5 ]
Ritchie, D. [6 ]
Jones, G. [6 ]
Griffiths, J. [6 ]
机构
[1] UCL, Dept Elect & Elect Engn, Torrington Pl, London WC1E 7JE, England
[2] London Ctr Nanotechnol, 17-19 Gordon St, London WC1H 0AH, England
[3] Leibniz Inst Forschungsverbund Berlin eV, Paul Drude Inst Festkorperelekt, Hausvogteipl 5-7, D-10117 Berlin, Germany
[4] Ekendiz Tanay Ctr Arts & Sci, Dept Phys, TR-48650 Mugla, Turkiye
[5] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S10 2TN, England
[6] Cavendish Lab, JJ Thomson Ave, Cambridge CB3 0HE, England
[7] Nanyang Technol Univ, Sch Phys & Math Sci, 21 Nanyang Link, Singapore 637371, Singapore
基金
英国工程与自然科学研究理事会;
关键词
FERROMAGNETISM; POLARIZATION; TRANSITIONS;
D O I
10.1103/PhysRevB.107.205307
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present experimental results where hysteresis is observed depending on the magnetic field sweep direction in the integer quantum Hall regime of a high-mobility two-dimensional electron system formed in a GaAs/AlGaAs heterostructure. We analyze the results based on the screening theory and show that the anomalous effects observed stem from the nonequilibrium processes resulting from the formation of metal-like and insulator-like regions due to direct Coulomb interactions and the dissipative nature of the Hall bar together with the scattering-influenced contacts. Furthermore, the hysteretic behavior is shown for the integer filling factors v = 1, 2, and 4 and for certain fractional states at the longitudinal resistance. We argue that the nonequilibration is not only due to contacts, in contrast, but also due to the nature of the finite size dissipative Hall bar under interactions and Landau quantization.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Stripe formation in the fractional quantum Hall regime
    Lee, SY
    Scarola, VW
    Jain, JK
    PHYSICAL REVIEW LETTERS, 2001, 87 (25) : 256803/1 - 256803/4
  • [42] Nonlinear optics in the fractional quantum Hall regime
    Patrick Knüppel
    Sylvain Ravets
    Martin Kroner
    Stefan Fält
    Werner Wegscheider
    Atac Imamoglu
    Nature, 2019, 572 : 91 - 94
  • [43] RESONANT TUNNELING IN THE FRACTIONAL QUANTUM HALL REGIME
    CHAMON, CD
    WEN, XG
    PHYSICAL REVIEW LETTERS, 1993, 70 (17) : 2605 - 2608
  • [44] Charged excitons in the fractional quantum Hall regime
    Yusa, G
    Shtrikman, H
    Bar-Joseph, I
    PHYSICAL REVIEW LETTERS, 2001, 87 (21) : 216402 - 1
  • [45] Edge reconstruction in the fractional quantum Hall regime
    Wan, X
    Rezayi, EH
    Yang, K
    PHYSICAL REVIEW B, 2003, 68 (12)
  • [46] Charged excitons in fractional quantum Hall regime
    Byszewsk, M.
    Chwalisz-Pietka, B.
    Maude, D. K.
    Sadowski, M. L.
    Potemski, M.
    Saku, T.
    Hirayama, Y.
    Studenikin, S.
    Austing, G.
    Sachrajda, A. S.
    Hawrylak, P.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 655 - +
  • [47] Mesoscopic effects in the fractional quantum Hall regime
    Geller, MR
    Loss, D
    PHYSICA E, 1997, 1 (1-4): : 120 - 124
  • [48] Crystallization of levitons in the fractional quantum Hall regime
    Ronetti, Flavio
    Vannucci, Luca
    Ferraro, Dario
    Jonckheere, Thibaut
    Rech, Jerome
    Martin, Thierry
    Sassetti, Maura
    PHYSICAL REVIEW B, 2018, 98 (07)
  • [49] Persistent Hall voltage and current in the fractional quantum Hall regime
    Kettemann, S
    PHYSICAL REVIEW B, 1997, 55 (04): : 2512 - 2522
  • [50] Integer and fractional quantum Hall effect in a strip of stripes
    Jelena Klinovaja
    Daniel Loss
    The European Physical Journal B, 2014, 87