Solution to the Rhoades' problem under minimal metric structure

被引:1
|
作者
Savaliya, Jayesh [1 ]
Gopal, Dhananjay [2 ]
Moreno, Juan Martinez [3 ]
Srivastava, Shailesh Kumar [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Math, Surat 395007, India
[2] Guru Ghasidas Vishwavidyalaya, Dept Math, Bilaspur 495009, India
[3] Univ Jaen, Dept Math, Jaen 23071, Spain
来源
JOURNAL OF ANALYSIS | 2024年 / 32卷 / 03期
关键词
Discontinuity; Minimal metric; Non-triangular metric; Fixed point; MEIR-KEELER TYPE; FIXED-POINTS; DISCONTINUITY; CONTRACTIONS; DEFINITIONS;
D O I
10.1007/s41478-024-00722-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An open problem proposed by Rhoades (Contemp Math 72:233-245, 1988) is the following, "Is there a contractive condition that guarantees a fixed point's existence but does not require the mapping to be continuous at that point?" In this paper, we generalize a result of Bisht (J Fixed Point Theory Appl 25:11, 2023), which allows us to find a new solution to this open problem. Furthermore, we have validated the result generated in the article by producing several examples.
引用
收藏
页码:1787 / 1799
页数:13
相关论文
共 50 条
  • [11] On metric types that are definable in an o-minimal structure
    Valette, Guillaume
    JOURNAL OF SYMBOLIC LOGIC, 2008, 73 (02) : 439 - 447
  • [12] NUMERICAL-SOLUTION TO MINIMAL SURFACE PROBLEM
    JOURON, C
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1975, 59 (04) : 311 - 341
  • [14] The minimal solution to the μ/Bμ problem in gauge mediation
    Kang, Zhaofeng
    Li, Tianjun
    Liu, Tao
    Yang, Jin Min
    JOURNAL OF HIGH ENERGY PHYSICS, 2012, (04):
  • [15] Solution of the problem of describing minimal Seifert manifolds
    A. A. Perfilyev
    Siberian Mathematical Journal, 2007, 48 : 126 - 141
  • [16] Solution of the problem of describing minimal Seifert manifolds
    Perfilyev, A. A.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (01) : 126 - 141
  • [17] The minimal solution to the μ/Bμ problem in gauge mediation
    Zhaofeng Kang
    Tianjun Li
    Tao Liu
    Jin Min Yang
    Journal of High Energy Physics, 2012
  • [18] The Closest Pair Problem under the Hamming Metric\]
    Min, Kerui
    Kao, Ming-Yang
    Zhu, Hong
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2009, 5609 : 205 - +
  • [19] An approximate solution to the metric SSTRESS problem in multidimensional scaling
    Tarazaga, P
    Trosset, MW
    DIMENSION REDUCTION, COMPUTATIONAL COMPLEXITY AND INFORMATION, 1998, 30 : 292 - 295
  • [20] The use of the chain metric solution of the problem on the group choice
    Kurochka, M.A.
    Kibernetika i Vychislitel'naya Tekhnika, 1992, (01): : 85 - 92