3D printing of honeycomb Si3N4 ceramic

被引:8
|
作者
Ma, Siqi [1 ,2 ]
Fu, Shuai [3 ]
Wang, Qikun [1 ,2 ]
Yang, Hualong [1 ,2 ]
Li, Wanlin [1 ,2 ]
He, Peigang [1 ,2 ]
Wang, Meirong [4 ]
Cai, Delong [5 ]
Duan, Xiaoming [1 ,2 ]
Jia, Dechang [1 ,2 ]
Lin, Hua-Tay [6 ]
Zhou, Yu [1 ,2 ]
机构
[1] Harbin Inst Technol, Inst Adv Ceram, Sch Mat Sci & Engn, Harbin, Peoples R China
[2] Harbin Inst Technol, Key Lab Adv Struct Funct Integrat Mat & Green Mfg, Harbin, Peoples R China
[3] Max Planck Inst Polymer Res, Mainz, Germany
[4] Harbin Inst Technol, Sch Mat Sci & Engn, Weihai, Peoples R China
[5] Harbin Engn Univ, Coll Mat Sci & Chem Engn, Key Lab Superlight Mat & Surface Technol, Minist Educ, Harbin, Peoples R China
[6] Guangdong Univ Technol, Sch Electromech Engn, Guangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
3D printing; honeycomb Si3N4 ceramics; non-catastrophic fracture; rheological properties; slump rates; SILICON-NITRIDE CERAMICS; FABRICATION; STRENGTH; MICROSTRUCTURE; PERFORMANCE; ABSORPTION; DENSE;
D O I
10.1111/ijac.14384
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, a honeycomb Si3N4 ceramic was fabricated by 3D printing with a well-preserved structure. The effects of Si3N4 content on the rheological properties of Si3N4/sol-silica ink and the printing resolution of products were investigated. The microstructure, phase composition, liner shrinkage rate, and fracture behavior of printed samples before and after sintering were systematically characterized in detail. The results showed that the modified inks had the optimized rheological properties, and the stress-shear rate curves corresponding to each slurry could be well described by Bingham and Herschel-Bulkley fluid models. The corresponding slump rates of the printed samples with different Si3N4 to sol-silica mass ratios were all lower than 4%, and the linear shrinkage rate of all of the samples after sintering was below 20%. The fracture behavior under compressive loading of the honeycomb Si3N4 ceramics tended to be non-catastrophic fractures both before and after sintering. The compressive strengths of all of the printed samples decreased with the increase of the Si3N4 content, and the highest compressive strength of the honeycomb ceramics could reach 131.2 MPa after sintering at 1600 degrees C, which was about 366.9% higher than that of the samples in green state prior to the sintering.
引用
收藏
页码:2239 / 2248
页数:10
相关论文
共 50 条
  • [21] Examination of novel electrosprayed biogenic hydroxyapatite coatings on Si3N4 and Si3N4/MWCNT ceramic composite
    Zagyva, Tamas
    Balazsi, Katalin
    Balazsi, Csaba
    PROCESSING AND APPLICATION OF CERAMICS, 2019, 13 (02) : 132 - 138
  • [22] Joining dense Si3N4 to porous Si3N4 by using an anorthite based glass-ceramic
    FANG Jian
    ZHANG Jie
    LIU ChunFeng
    SUN LiangBo
    GUO SongSong
    WANG DongBao
    Science China(Technological Sciences), 2020, 63 (08) : 1538 - 1548
  • [23] Bond strength and microstructural investigation on Si3N4/Si3N4 joint bonded with glass-ceramic
    Xie, RJ
    Huang, LP
    Fu, XR
    JOURNAL OF MATERIALS SCIENCE LETTERS, 1998, 17 (09) : 761 - 763
  • [24] Joining dense Si3N4 to porous Si3N4 by using an anorthite based glass-ceramic
    Jian Fang
    Jie Zhang
    ChunFeng Liu
    LiangBo Sun
    SongSong Guo
    DongBao Wang
    Science China Technological Sciences, 2020, 63 : 1538 - 1548
  • [25] A crystalline Si3N4 amorphous Si3N4 composite
    Reimanis, IE
    Petrovic, JJ
    Suematsu, H
    Mitchell, TE
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (02) : 395 - 400
  • [26] Crystalline Si3N4/amorphous Si3N4 composite
    Los Alamos Natl Lab, Los Alamos, United States
    J Am Ceram Soc, 2 (395-400):
  • [27] Low temperature heat capacity measurements of β-Si3N4 and γ-Si3N4: Determination of the equilibrium phase boundary between β-Si3N4 and γ-Si3N4
    Nishiyama, Norimasa
    Kitani, Suguru
    Ohta, Yuki
    Kulik, Eleonora
    Netriova, Zuzana
    Holzheid, Astrid
    Lences, Zoltan
    Kawaji, Hitoshi
    Wakai, Fumihiro
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2020, 40 (16) : 6309 - 6315
  • [28] Laser surface nanostructuring for reliable Si3N4/Si3N4 and Si3N4/Invar joined components
    Salvo, Milena
    Casalegno, Valentina
    Suess, Manuela
    Gozzelino, Laura
    Wilhelmi, Christian
    CERAMICS INTERNATIONAL, 2018, 44 (16) : 20596 - 20597
  • [29] Digital light processing 3D printing of surface-oxidized Si3N4 coated by silane coupling agent
    Yang, Ping
    Sun, Zhenfei
    Huang, Shengwu
    Ou, Jun
    Wu, Shanghua
    Jiang, Qiangguo
    Li, Dichen
    JOURNAL OF ASIAN CERAMIC SOCIETIES, 2022, 10 (01) : 69 - 82
  • [30] β-Si3N4及添加β-Si3N4的α-Si3N4的气氛加压烧结
    张宝林
    庄汉锐
    罗新宇
    李文兰
    硅酸盐通报, 1999, (02) : 37 - 41+47