Structure-Based Discovery of the SARS-CoV-2 Main Protease Noncovalent Inhibitors from Traditional Chinese Medicine

被引:6
|
作者
Jin, Xiaojie [1 ,2 ,3 ]
Zhang, Min [1 ]
Fu, Beibei [4 ]
Li, Mi [1 ]
Yang, Jingyi [5 ]
Zhang, Zhiming [6 ]
Li, Chenghao [7 ]
Zhang, Huijuan [1 ]
Wu, Haibo [4 ]
Xue, Weiwei [5 ]
Liu, Yongqi [2 ,3 ]
机构
[1] Gansu Univ Chinese Med, Coll Pharm, Lanzhou 730000, Peoples R China
[2] Gansu Univ Chinese Med, Gansu Univ Key Lab Mol Med & Chinese Med Prevent &, Lanzhou 730000, Peoples R China
[3] Gansu Univ Chinese Med, Minist Educ, Key Lab Dunhuang Med, Lanzhou 730000, Peoples R China
[4] Chongqing Univ, Sch Life Sci, Chongqing 401331, Peoples R China
[5] Chongqing Univ, Innovat Drug Res Ctr, Sch Pharmaceut Sci, Chongqing Key Lab Nat Prod Synth & Drug Res, Chongqing 401331, Peoples R China
[6] Gansu Prov Hosp TCM, Lanzhou 730000, Peoples R China
[7] Yangzhou Univ, Med Coll, Yangzhou 225000, Peoples R China
基金
中国国家自然科学基金;
关键词
COVID-19;
D O I
10.1021/acs.jcim.3c01327
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Traditional Chinese medicine (TCM) has been extensively employed for the treatment of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, there is demand for discovering more SARS-CoV-2 Mpro inhibitors with diverse scaffolds to optimize anti-SARS-CoV-2 lead compounds. In this study, comprehensive in silico and in vitro assays were utilized to determine the potential inhibitors from TCM compounds against SARS-CoV-2 Mpro, which is an important therapeutic target for SARS-CoV-2. The ensemble docking analysis of 18263 TCM compounds against 15 SARS-CoV-2 Mpro conformations identified 19 TCM compounds as promising candidates. Further in vitro testing validated three compounds as inhibitors of SARS-CoV-2 Mpro and showed IC50 values of 4.64 +/- 0.11, 7.56 +/- 0.78, and 11.16 +/- 0.26 mu M, with EC50 values of 12.25 +/- 1.68, 15.58 +/- 0.77, and 29.32 +/- 1.25 mu M, respectively. Molecular dynamics (MD) simulations indicated that the three complexes remained stable over the last 100 ns of production run. An analysis of the binding mode revealed that the active compounds occupy different subsites (S1, S2, S3, and S4) of the active site of SARS-CoV-2 Mpro via specific poses through noncovalent interactions with key amino acids (e.g., HIS 41, ASN 142, GLY 143, MET 165, GLU 166, or GLN 189). Overall, this study provides evidence indicating that the three natural products obtained from TCM could be further used for anti-COVID-19 research, justifying the investigation of Chinese herbal medicinal ingredients as bioactive constituents for therapeutic targets.
引用
收藏
页码:1319 / 1330
页数:12
相关论文
共 50 条
  • [21] Contribution of the catalytic dyad of SARS-CoV-2 main protease to binding covalent and noncovalent inhibitors
    Kovalevsky, Andrey
    Aniana, Annie
    Coates, Leighton
    Bonnesen, Peter V.
    Nashed, Nashaat T.
    Louis, John M.
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2023, 299 (07)
  • [22] Fragment Based Drug Discovery of SARS-CoV-2 Main Protease
    Song, W.
    Li, S.
    Chan, A. W. E.
    Coker, A.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C705 - C705
  • [23] Computation of Absolute Binding Free Energies for Noncovalent Inhibitors with SARS-CoV-2 Main Protease
    Ghahremanpour, Mohammad M.
    Saar, Anastasia
    Tirado-Rives, Julian
    Jorgensen, William L.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (16) : 5309 - 5318
  • [24] Biological Efficacy of 40 Noncovalent SARS-CoV-2 Main Protease Inhibitors: A Computational Study
    Joshi, Sravani
    Srivastava, Ruby
    IRANIAN JOURNAL OF SCIENCE, 2025, 49 (02) : 307 - 318
  • [25] Expedited Approach toward the Rational Design of Noncovalent SARS-CoV-2 Main Protease Inhibitors
    Kitamura, Naoya
    Sacco, Michael Dominic
    Ma, Chunlong
    Hu, Yanmei
    Townsend, Julia Alma
    Meng, Xiangzhi
    Zhang, Fushun
    Zhang, Xiujun
    Ba, Mandy
    Szeto, Tommy
    Kukuljac, Adis
    Marty, Michael Thomas
    Schultz, David
    Cherry, Sara
    Xiang, Yan
    Chen, Yu
    Wang, Jun
    JOURNAL OF MEDICINAL CHEMISTRY, 2022, 65 (04) : 2848 - 2865
  • [26] Allosteric inhibitors of the main protease of SARS-CoV-2
    Samrat, Subodh Kumar
    Xu, Jimin
    Xie, Xuping
    Gianti, Eleonora
    Chen, Haiying
    Zou, Jing
    Pattis, Jason G.
    Elokely, Khaled
    Lee, Hyun
    Li, Zhong
    Klein, Michael L.
    Shi, Pei-Yong
    Zhou, Jia
    Li, Hongmin
    ANTIVIRAL RESEARCH, 2022, 205
  • [27] Developing inhibitors of the SARS-CoV-2 main protease
    Seitz, Christian
    Markota, Vedran
    Sztain-Pedone, Terra
    Esler, Morgan
    Moghadasi, Arad
    Kennelly, Samantha
    Demir, Ozlem
    Aihara, Hideki
    Harki, Daniel A.
    Harris, Reuben
    McCammon, J. Andrew
    Amaro, Rommie E.
    BIOPHYSICAL JOURNAL, 2022, 121 (03) : 192A - 192A
  • [28] Potential SARS-CoV-2 main protease inhibitors
    Banerjee, Riddhidev
    Perera, Lalith
    Tillekeratne, L. M. Viranga
    DRUG DISCOVERY TODAY, 2021, 26 (03) : 804 - 816
  • [29] Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor
    Glaser, Jens
    Sedova, Ada
    Galanie, Stephanie
    Kneller, Daniel W.
    Davidson, Russell B.
    Maradzike, Elvis
    Del Galdo, Sara
    Labbe, Audrey
    Hsu, Darren J.
    Agarwal, Rupesh
    Bykov, Dmytro
    Tharrington, Arnold
    Parks, Jerry M.
    Smith, Dayle M. A.
    Daidone, Isabella
    Coates, Leighton
    Kovalevsky, Andrey
    Smith, Jeremy C.
    ACS PHARMACOLOGY & TRANSLATIONAL SCIENCE, 2022, 5 (04) : 255 - 265
  • [30] On the origins of SARS-CoV-2 main protease inhibitors
    Janin, Yves L.
    RSC MEDICINAL CHEMISTRY, 2024, 15 (01): : 81 - 118