Enhancing medical image segmentation with a multi-transformer U-Net

被引:3
|
作者
Dan, Yongping [1 ]
Jin, Weishou [1 ]
Yue, Xuebin [2 ]
Wang, Zhida [1 ]
机构
[1] Zhongyuan Univ Technol, Sch Elect & Informat, Zhengzhou, Henan, Peoples R China
[2] Ritsumeikan Univ, Res Org Sci & Technol, Kusatsu, Japan
来源
PEERJ | 2024年 / 12卷
关键词
CT or X-ray lung images; Medical image segmentation; Multi-transformer; Unet;
D O I
10.7717/peerj.17005
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Various segmentation networks based on Swin Transformer have shown promise in medical segmentation tasks. Nonetheless, challenges such as lower accuracy and slower training convergence have persisted. To tackle these issues, we introduce a novel approach that combines the Swin Transformer and Deformable Transformer to enhance overall model performance. We leverage the Swin Transformer's window attention mechanism to capture local feature information and employ the Deformable Transformer to adjust sampling positions dynamically, accelerating model convergence and aligning it more closely with object shapes and sizes. By amalgamating both Transformer modules and incorporating additional skip connections to minimize information loss, our proposed model excels at rapidly and accurately segmenting CT or X-ray lung images. Experimental results demonstrate the remarkable, showcasing the significant prowess of our model. It surpasses the performance of the standalone Swin Transformer's Swin Unet and converges more rapidly under identical conditions, yielding accuracy improvements of 0.7% (resulting in 88.18%) and 2.7% (resulting in 98.01%) on the COVID-19 CT scan lesion segmentation dataset and Chest X-ray Masks and Labels dataset, respectively. This advancement has the potential to aid medical practitioners in early diagnosis and treatment decision-making.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Medical ultrasound image segmentation using Multi-Residual U-Net architecture
    Shereena, V. B.
    Raju, G.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 27067 - 27088
  • [32] Medical Ultrasound Image Segmentation Using U-Net Architecture
    Shereena, V. B.
    Raju, G.
    ADVANCES IN COMPUTING AND DATA SCIENCES (ICACDS 2022), PT I, 2022, 1613 : 361 - 372
  • [33] Modified Double U-Net Architecture for Medical Image Segmentation
    Deb, Sagar Deep
    Jha, Rajib Kumar
    IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES, 2023, 7 (02) : 151 - 162
  • [34] A Bypass-Based U-Net for Medical Image Segmentation
    Chen, Kaixuan
    Xu, Gengxin
    Qian, Jiaying
    Ren, Chuan-Xian
    INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 155 - 164
  • [35] Focusing the View: Enhancing U-Net with Convolutional Block Attention for Superior Medical Image Segmentation
    Nhu-Tai Do
    Dat Nguyen Khanh
    Tram-Tran Nguyen-Quynh
    Quoc-Huy Nguyen
    INTELLIGENCE OF THINGS: TECHNOLOGIES AND APPLICATIONS, ICIT 2024, VOL 2, 2025, 230 : 156 - 165
  • [36] A Cascade U-Net With Transformer for Retinal Multi-Lesion Segmentation
    Zheng, Haiyang
    Liu, Feng
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (05)
  • [37] ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation
    Deng, Yunjiao
    Hou, Yulei
    Yan, Jiangtao
    Zeng, Daxing
    IEEE Access, 2022, 10 : 35932 - 35941
  • [38] ELU-Net: An Efficient and Lightweight U-Net for Medical Image Segmentation
    Deng, Yunjiao
    Hou, Yulei
    Yan, Jiangtao
    Zeng, Daxing
    IEEE ACCESS, 2022, 10 : 35932 - 35941
  • [39] DRLSU-Net: Level set with U-Net for medical image segmentation
    Wang, Xiaofeng
    Liu, Jiashan
    Yang, Rentao
    Wu, Zhize
    Sun, Lingma
    Zou, Le
    DIGITAL SIGNAL PROCESSING, 2025, 157
  • [40] BCU-Net: Bridging ConvNeXt and U-Net for medical image segmentation
    Zhang, Hongbin
    Zhong, Xiang
    Li, Guangli
    Liu, Wei
    Liu, Jiawei
    Ji, Donghong
    Li, Xiong
    Wu, Jianguo
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 159