SSCL: Semi-supervised Contrastive Learning for Industrial Anomaly Detection

被引:0
|
作者
Cai, Wei [1 ]
Gao, Jiechao [2 ]
机构
[1] Univ Sci & Technol Beijing, Beijing, Peoples R China
[2] Univ Virginia, Charlottesville, VA 22904 USA
关键词
Semi-supervised classification; Anomaly detection; Contrastive learning; Data representation;
D O I
10.1007/978-981-99-8462-6_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Anomaly detection is an important machine learning task that aims to identify data points that are inconsistent with normal data patterns. In real-world scenarios, it is common to have access to some labeled and unlabeled samples that are known to be either normal or anomalous. To make full use of both types of data, we propose a semi-supervised contrastive learning method that combines self-supervised contrastive learning and supervised contrastive learning, forming a new framework: SSCL. Our method can learn a data representation that can distinguish between normal and anomalous data patterns, based on limited labeled data and abundant unlabeled data. We evaluate our method on multiple benchmark datasets, including MNIST, CIFAR-10 and industrial anomaly detection MVtec, STC. The experimental results show that our method achieves superior performance on all datasets compared to existing state-of-the-art methods.
引用
收藏
页码:100 / 112
页数:13
相关论文
共 50 条
  • [21] Semi-Supervised Learning-Based Method for Unknown Anomaly Detection
    Cheng, Yudong
    Zhou, Fang
    Jisuanji Yanjiu yu Fazhan/Computer Research and Development, 2024, 61 (07): : 1670 - 1680
  • [22] A Semi-Supervised Learning Approach for Network Anomaly Detection in Fog Computing
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    ICC 2019 - 2019 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2019,
  • [23] Multi-domain Active Learning for Semi-supervised Anomaly Detection
    Vercruyssen, Vincent
    Perini, Lorenzo
    Meert, Wannes
    Davis, Jesse
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT IV, 2023, 13716 : 485 - 501
  • [24] CONTRASTIVE LEARNING FOR ONLINE SEMI-SUPERVISED GENERAL CONTINUAL LEARNING
    Michel, Nicolas
    Negrel, Romain
    Chierchia, Giovanni
    Bercher, Jean-Francois
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 1896 - 1900
  • [25] Flow-based anomaly detection using semi-supervised learning
    Jadidi, Zahra
    Muthukkumarasamy, Vallipuram
    Sithirasenan, Elankayer
    Singh, Kalvinder
    2015 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ICSPCS), 2015,
  • [26] Comparison of Semi-supervised Deep Neural Networks for Anomaly Detection in Industrial Processes
    Chadha, Gavneet Singh
    Rabbani, Arfyan
    Schwung, Andreas
    2019 IEEE 17TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2019, : 214 - 219
  • [27] Semi-supervised anomaly detection with dual prototypes autoencoder for industrial surface inspection
    Liu, Jie
    Song, Kechen
    Feng, Mingzheng
    Yan, Yunhui
    Tu, Zhibiao
    Zhu, Liu
    OPTICS AND LASERS IN ENGINEERING, 2021, 136
  • [28] Semi-supervised Anomaly Detection on Attributed Graphs
    Kumagai, Atsutoshi
    Iwata, Tomoharu
    Fujiwara, Yasuhiro
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [29] An Efficient Semi-Supervised SVM for Anomaly Detection
    Kim, Junae
    Montague, Paul
    2017 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2017, : 2843 - 2850
  • [30] Contrastive Credibility Propagation for Reliable Semi-supervised Learning
    Kutt, Brody
    Ramteke, Pralay
    Mignot, Xavier
    Toman, Pamela
    Ramanan, Nandini
    Chhetri, Sujit Rokka
    Huang, Shan
    Du, Min
    Hewlett, William
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 21294 - 21303