CaSE-NeRF: Camera Settings Editing of Neural Radiance Fields

被引:0
|
作者
Sun, Ciliang [1 ]
Li, Yuqi [1 ]
Li, Jiabao [1 ]
Wang, Chong [1 ]
Dai, Xinmiao [1 ]
机构
[1] Ningbo Univ, Fac Elect Engn & Comp Sci, Ningbo, Peoples R China
来源
ADVANCES IN COMPUTER GRAPHICS, CGI 2023, PT II | 2024年 / 14496卷
关键词
neural radiance field; camera setting editing; novel view synthesis; image-based rendering;
D O I
10.1007/978-3-031-50072-5_8
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Neural Radiance Fields (NeRF) have shown excellent quality in three-dimensional (3D) reconstruction by synthesizing novel views from multi-view images. However, previous NeRF-based methods do not allow users to perform user-controlled camera setting editing in the scene. While existing works have proposed methods to modify the radiance field, these modifications are limited to camera settings within the training set. Hence, we present Camera Settings Editing of Neural Radiance Fields (CaSE-NeRF) to recover a radiance field from a set of views with different camera settings. In our approach, we allow users to perform controlled camera settings editing on the scene and synthesize the novel view images of the edited scene without re-training the network. The key to our method lies in modeling each camera parameter separately and rendering various 3D defocus effects based on thin lens imaging principles. By following the image processing of real cameras, we implicitly model it and learn gains that are continuous in the latent space and independent of the image. The control of color temperature and exposure is plug-and-play, and can be easily integrated into NeRF-based frameworks. As a result, our method allows for manual and free post-capture control of the viewpoint and camera settings of 3D scenes. Through our extensive experiments on two real-scene datasets, we have demonstrated the success of our approach in reconstructing a normal NeRF with consistent 3D geometry and appearance. Our related code and data is available at https://github.com/CPREgroup/CaSE- NeRF.
引用
收藏
页码:95 / 107
页数:13
相关论文
共 50 条
  • [31] NeRFFaceEditing: Disentangled Face Editing in Neural Radiance Fields
    Jiang, Kaiwen
    Chen, Shu-Yu
    Liu, Feng-Lin
    Fu, Hongbo
    Gao, Lin
    PROCEEDINGS SIGGRAPH ASIA 2022, 2022,
  • [32] Ced-NeRF: A Compact and Efficient Method for Dynamic Neural Radiance Fields
    Lin, Youtian
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 4, 2024, : 3504 - 3512
  • [33] NeRF-SR: High Quality Neural Radiance Fields using Supersampling
    Wang, Chen
    Wu, Xian
    Guo, Yuan-Chen
    Zhang, Song-Hai
    Tai, Yu-Wing
    Hu, Shi-Min
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 6445 - 6454
  • [34] NeRF-Art: Text-Driven Neural Radiance Fields Stylization
    Wang, Can
    Jiang, Ruixiang
    Chai, Menglei
    He, Mingming
    Chen, Dongdong
    Liao, Jing
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2024, 30 (08) : 4983 - 4996
  • [35] Exact-NeRF: An Exploration of a Precise Volumetric Parameterization for Neural Radiance Fields
    Isaac-Medina, Brian K. S.
    Willcocks, Chris G.
    Breckon, Toby P.
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 66 - 75
  • [36] RS-NeRF: Neural Radiance Fields from Rolling Shutter Images
    Niu, Muyao
    Chen, Tong
    Zhan, Yifan
    Li, Zhuoxiao
    Ji, Xiang
    Zheng, Yinqiang
    COMPUTER VISION-ECCV 2024, PT XLVI, 2025, 15104 : 163 - 180
  • [37] Neural Impostor: Editing Neural Radiance Fields with Explicit Shape Manipulation
    Liu, Ruiyang
    Xiang, Jinxu
    Zhao, Bowen
    Zhang, Ran
    Yu, Jingyi
    Zheng, Changxi
    COMPUTER GRAPHICS FORUM, 2023, 42 (07)
  • [38] DoF-NeRF: Depth-of-Field Meets Neural Radiance Fields
    Wu, Zijin
    Li, Xingyi
    Peng, Juewen
    Lu, Hao
    Cao, Zhiguo
    Zhong, Weicai
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, : 1718 - 1729
  • [39] Touching a NeRF: Leveraging Neural Radiance Fields for Tactile Sensory Data Generation
    Zhong, Shaohong
    Albini, Alessandro
    Jones, Oiwi Parker
    Maiolino, Perla
    Posner, Ingmar
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1618 - 1628
  • [40] Loc-NeRF: Monte Carlo Localization using Neural Radiance Fields
    Maggio, Dominic
    Abate, Marcus
    Shi, Jingnan
    Mario, Courtney
    Carlone, Luca
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA, 2023, : 4018 - 4025