The effect of interface structures on deformation behavior of Cu/Ni multilayer by molecular dynamics

被引:2
|
作者
Pang, Weiwei [1 ]
Liu, Aosong [1 ]
Yang, Kai [1 ]
Chen, Renbin [1 ]
Feng, Xiaotong [1 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin Key Lab Mat Laminating Fabricat & Interfac, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
Simulation; Heterostructure; Strength; Dislocations; Composite; STRAIN-RATE; MECHANICAL-PROPERTIES; TENSILE DEFORMATION; THICKNESS; STRENGTH; TEMPERATURE; COMPOSITES; NUCLEATION; DUCTILITY; FRACTURE;
D O I
10.1557/s43578-024-01291-y
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Molecular dynamics investigated the effect of interface structures on deformation behavior of Cu/Ni multilayer. Interface structures of (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model, (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(001)}$$\end{document}-model, and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model display triangular, square, and rectangular, respectively. ((1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model has the largest compressive strength and (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(}001{)}$$\end{document}-model has the largest compressive strain. For three models, plastic yields are triggered by new lattice dislocation nucleation, interfacial misfit dislocation decomposition, and interfacial misfit dislocation slip, respectively, plastic processes are dominated by leading and trailing dislocations, leading dislocations, leading and trailing dislocations, respectively. During plastic deformation process, Lomer-Cottrell locks and Hirth locks formed in (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({001})$$\end{document}-model, as well as necklace-like dislocation segments formed in (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model partly harden the multilayer. The barrier for dislocation crossing interface in (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}1\bar{1}})$$\end{document}-model is the largest. The calculated dislocation density and interface thickness of 1 over bar 11 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\overline{1}1\overline{1}} \right)$$\end{document}-model are the largest, followed by (001)-model and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}10})$$\end{document}-model. The sensitivity of different models to strain rate, temperature, and layer thickness is also discussed.
引用
收藏
页码:1057 / 1072
页数:16
相关论文
共 50 条
  • [21] Molecular Dynamics Simulation of the Structure and Deformation Behavior of γ/α2 Interface in TiAl Alloys
    Tu Aidong
    Teng Chunyu
    Wang Hao
    Xu Dongsheng
    Fu Yun
    Ren Zhanyong
    Yang Rui
    ACTA METALLURGICA SINICA, 2019, 55 (02) : 291 - 298
  • [22] Effect of Cu and Ni Addition on High Temperature Deformation Behavior in Sn-Cu-Ni Solder Alloys
    Takano, Masayuki
    Kuroda, Keiji
    Hase, Kohei
    Tanaka, Shuuto
    Yamasaki, Shigeto
    Mitsuhara, Masatoshi
    Nakashima, Hideharu
    JOURNAL OF THE JAPAN INSTITUTE OF METALS AND MATERIALS, 2017, 81 (07) : 337 - 344
  • [23] Micromagnetic behavior of electrodeposited Ni/Cu multilayer nanowires
    Chen, M
    Searson, PC
    Chien, CL
    JOURNAL OF APPLIED PHYSICS, 2003, 93 (10) : 8253 - 8255
  • [24] The effect of Pb on the interface structures of Co Ni and Co Cu metallic multilayers
    Kamiko, M
    Furukawa, R
    Kim, KY
    Iwanami, M
    Yamamoto, R
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1999, 198-99 : 716 - 718
  • [25] Effect of Pb on the interface structures of Co/Ni and Co/Cu metallic multilayers
    Kamiko, M.
    Furukawa, R.
    Kim, K.-Y.
    Iwanami, M.
    Yamamoto, R.
    Journal of Magnetism and Magnetic Materials, 1999, 198 : 716 - 718
  • [26] The Laminated/Network Interface Design and Deformation Behavior of Multilayer Steel
    Ding, Jiale
    Liu, Baoxi
    Zhang, Boyang
    Zhao, Jianfeng
    Li, Bo
    Feng, Jianhang
    Ji, Puguang
    Luo, Xing
    Yin, Fuxing
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2024, 55 (08): : 3107 - 3122
  • [27] Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter
    Fu, Tao
    Peng, Xianghe
    Chen, Xiang
    Weng, Shayuan
    Hu, Ning
    Li, Qibin
    Wang, Zhongchang
    SCIENTIFIC REPORTS, 2016, 6
  • [28] Molecular dynamics simulation of twin boundary effect on deformation of Cu nanopillars
    Sainath, G.
    Choudhary, B. K.
    PHYSICS LETTERS A, 2015, 379 (34-35) : 1902 - 1905
  • [29] Molecular dynamics simulation of nanoindentation on Cu/Ni nanotwinned multilayer films using a spherical indenter
    Tao Fu
    Xianghe Peng
    Xiang Chen
    Shayuan Weng
    Ning Hu
    Qibin Li
    Zhongchang Wang
    Scientific Reports, 6
  • [30] Thickness effect of graphene film on optimizing the interface and mechanical properties of Cu/Ni multilayer composites
    Zhang, X.
    Xu, C. Y.
    Gao, K.
    Liu, B. X.
    Ji, P. G.
    He, J. N.
    Wang, G. K.
    Yin, F. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 798