Molecular dynamics investigated the effect of interface structures on deformation behavior of Cu/Ni multilayer. Interface structures of (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model, (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(001)}$$\end{document}-model, and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model display triangular, square, and rectangular, respectively. ((1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}1\bar{1}})$$\end{document}-model has the largest compressive strength and (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${(}001{)}$$\end{document}-model has the largest compressive strain. For three models, plastic yields are triggered by new lattice dislocation nucleation, interfacial misfit dislocation decomposition, and interfacial misfit dislocation slip, respectively, plastic processes are dominated by leading and trailing dislocations, leading dislocations, leading and trailing dislocations, respectively. During plastic deformation process, Lomer-Cottrell locks and Hirth locks formed in (001)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({001})$$\end{document}-model, as well as necklace-like dislocation segments formed in (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}10})$$\end{document}-model partly harden the multilayer. The barrier for dislocation crossing interface in (1 over bar 11 over bar )\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$( {\bar{1}1\bar{1}})$$\end{document}-model is the largest. The calculated dislocation density and interface thickness of 1 over bar 11 over bar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\left( {\overline{1}1\overline{1}} \right)$$\end{document}-model are the largest, followed by (001)-model and (1 over bar 10)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\bar{1}10})$$\end{document}-model. The sensitivity of different models to strain rate, temperature, and layer thickness is also discussed.