Fibrinogen-Based Bioink for Application in Skin Equivalent 3D Bioprinting

被引:9
|
作者
Cavallo, Aida [1 ,2 ]
Al Kayal, Tamer [2 ]
Mero, Angelica [3 ]
Mezzetta, Andrea [3 ]
Guazzelli, Lorenzo [3 ]
Soldani, Giorgio [2 ]
Losi, Paola [2 ]
机构
[1] Scuola Super Sant Anna, Inst Life Sci, I-56127 Pisa, Italy
[2] CNR, Inst Clin Physiol, I-54100 Massa, Italy
[3] Univ Pisa, Dept Pharm, I-56126 Pisa, Italy
关键词
fibrinogen; alginate; bioink; 3D bioprinting; skin equivalent; MECHANICAL-PROPERTIES; CELL-DENSITY; TISSUE; STRATEGIES; SCAFFOLDS;
D O I
10.3390/jfb14090459
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Three-dimensional bioprinting has emerged as an attractive technology due to its ability to mimic native tissue architecture using different cell types and biomaterials. Nowadays, cell-laden bioink development or skin tissue equivalents are still at an early stage. The aim of the study is to propose a bioink to be used in skin bioprinting based on a blend of fibrinogen and alginate to form a hydrogel by enzymatic polymerization with thrombin and by ionic crosslinking with divalent calcium ions. The biomaterial ink formulation, composed of 30 mg/mL of fibrinogen, 6% of alginate, and 25 mM of CaCl2, was characterized in terms of homogeneity, rheological properties, printability, mechanical properties, degradation rate, water uptake, and biocompatibility by the indirect method using L929 mouse fibroblasts. The proposed bioink is a homogeneous blend with a shear thinning behavior, excellent printability, adequate mechanical stiffness, porosity, biodegradability, and water uptake, and it is in vitro biocompatible. The fibrinogen-based bioink was used for the 3D bioprinting of the dermal layer of the skin equivalent. Three different normal human dermal fibroblast (NHDF) densities were tested, and better results in terms of viability, spreading, and proliferation were obtained with 4 x 106 cell/mL. The skin equivalent was bioprinted, adding human keratinocytes (HaCaT) through bioprinting on the top surface of the dermal layer. A skin equivalent stained by live/dead and histological analysis immediately after printing and at days 7 and 14 of culture showed a tissuelike structure with two distinct layers characterized by the presence of viable and proliferating cells. This bioprinted skin equivalent showed a similar native skin architecture, paving the way for its use as a skin substitute for wound healing applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Developing Tunable Bioink for Versatile 3D Bioprinting.
    Elawad, K.
    Jung, W.
    Kang, S. H.
    Chen, Y.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [22] Bioink properties before, during and after 3D bioprinting
    Hoelzl, Katja
    Lin, Shengmao
    Tytgat, Liesbeth
    Van Vlierberghe, Sandra
    Gu, Linxia
    Ovsianikov, Aleksandr
    BIOFABRICATION, 2016, 8 (03)
  • [23] Nanoengineered Osteoinductive Bioink for 3D Bioprinting Bone Tissue
    Chimene, David
    Miller, Logan
    Cross, Lauren M.
    Jaiswal, Manish K.
    Singh, Irtisha
    Gaharwar, Akhilesh K.
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (14) : 15976 - 15988
  • [24] Developing Tunable Bioink for Versatile 3D Bioprinting.
    Elawad, K.
    Jung, W.
    Kang, S. H.
    Chen, Y.
    MOLECULAR BIOLOGY OF THE CELL, 2017, 28
  • [25] 3D bioprinting of modified mannan bioink for tissue engineering
    Zhou, Zheng
    Huang, Yuting
    Liu, Hairong
    Zhao, Guoqun
    STAR PROTOCOLS, 2022, 3 (03):
  • [26] Clay Minerals as Bioink Ingredients for 3D Printing and 3D Bioprinting: Application in Tissue Engineering and Regenerative Medicine
    Garcia-Villen, Fatima
    Ruiz-Alonso, Sandra
    Lafuente-Merchan, Markel
    Gallego, Idoia
    Sainz-Ramos, Myriam
    Saenz-del-Burgo, Laura
    Pedraz, Jose Luis
    PHARMACEUTICS, 2021, 13 (11)
  • [27] A thermoresponsive PEG-based methacrylate triblock terpolymer as a bioink for 3D bioprinting
    Zhang, Kaiwen
    Constantinou, Anna P.
    O'Connell, Cathal
    Georgiou, Theoni K.
    Gelmi, Amy
    JOURNAL OF MATERIALS CHEMISTRY B, 2025, 13 (11) : 3593 - 3601
  • [28] Microcylinder-laden gelatin-based bioink engineered for 3D bioprinting
    Lee, Joshua
    Park, Chan Hee
    Kim, Cheol Sang
    MATERIALS LETTERS, 2018, 233 : 24 - 27
  • [29] 3D bioprinting of a corneal stroma equivalent
    Isaacson, Abigail
    Swioklo, Stephen
    Connon, Che J.
    EXPERIMENTAL EYE RESEARCH, 2018, 173 : 188 - 193
  • [30] Viscoll collagen solution as a novel bioink for direct 3D bioprinting
    Egor O. Osidak
    Pavel A. Karalkin
    Maria S. Osidak
    Vladislav A. Parfenov
    Dmitriy E. Sivogrivov
    Frederico D. A. S. Pereira
    Anna A. Gryadunova
    Elizaveta V. Koudan
    Yusef D. Khesuani
    Vladimir A. Кasyanov
    Sergei I. Belousov
    Sergey V. Krasheninnikov
    Timofei E. Grigoriev
    Sergey N. Chvalun
    Elena A. Bulanova
    Vladimir A. Mironov
    Sergey P. Domogatsky
    Journal of Materials Science: Materials in Medicine, 2019, 30